

Версия 6.4

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Уравнивание сети

Оглавление

т. пазначение документа 4
2. Общие сведения об уравнивании 4
3. Панель инструментов «Уравнивание блока» 5
4. Пакетное уравнивание 6
5. Настройка параметров отображения точек 7
5.1. Параметры отображения точек и ошибок на схеме блока 7
5.2. Настройка условных обозначений точек 9
5.3. Фильтр точек 12
5.4. Выделение точек
5.5. Окно «Атрибуты точки» 17
5.6. Список точек триангуляции 19
6. Краткий отчет об ошибках 21
7. Уравнивание блока снимков центральной проекции 22
7.1. Порядок работы при уравнивании блока снимков центральной проекции
7.2. Закладка «Система координат»
7.3. Закладка «Уравнивание» 24
7 3 1 Параметры уравнивания снимков центральной проекции 24
7.3.2 Уравнивание в своболной молепи
7.3.3. Метод независимых маршрутов
7.3.4. Расчет начального приближения по схеме блока
7 3 5. Метоп независимых стереопар
7.3.6. Метод независимых стереонар
7.3.7. Метод связок с самокадибровкой 37
7.3.7. Метод связок с самокалиоровкой
7.3.0. Учот систомотичоских очибок
7.5.10. Бысор подолока
7.4. Закладка «Отчет»
о. уравнивание сканерных олоков
о. 1. Порядок работы при уравнивании сканерных олоков
8.2. Закладка «Точки»
8.3. Закладка «Снимки»
8.3.1. Параметры уравнивания сканерных снимков
8.3.2. Строгии метод уравнивания 57
8.3.3. Метод с использованием RPC-коэффициентов 59
8.3.4. Универсальный метод уравнивания 61
8.3.5. Формирование стереопар вручную 62
8.3.6. Объединение снимков, полученных с одного витка 66
8.4. Закладка «Отчет» 70
8.5. Поэтапное уравнивание
8.6. Рекомендации по уравниванию моноблока 77
8.7. Рекомендации по количеству точек для уравнивания сканерного блока
9. Процесс уравнивания 83
10. Создание отчета уравнивания 84
11. Контроль точности уравнивания 86
12. Экспорт и импорт данных 89
12.1. Экспорт исходных данных 89
12.2. Импорт результатов уравнивания 91
13. Этапы контроля уравнивания 93
13.1. Контроль уравнивания в свободной модели 93
13.1.1. Деление на подблоки 93
13.1.2. Контроль ошибок в значении фокусного расстояния камеры
13.1.3. Контроль грубых ошибок постановки межмаршрутных связей
13.1.4. Промежуточный контроль грубых ошибок постановки связующих точек 94

13.1.5. Контроль грубых ошибок в межмаршрутных неперенесенных точках	94
13.1.6. Контроль ошибок постановки связующих точек	95
13.1.7. Контроль ошибочных автоматически поставленных точек	95
13.2. Контроль уравнивания с геодезической привязкой	96
13.2.1. Проверка правильности выбора системы координат	96
13.2.2. Контроль ошибок уравнивания с учетом координат центров проекции	97
13.2.3. Контроль ошибок уравнивания без центров проекции	97
13.2.4. Контроль ошибок уравнивания методом связок	98
14. Особенности уравнивания блоков аэрофотоснимков в системе	99
14.1. Особенности использования координат центров проекций	99
14.2. Съемка с большим коэффициентом продольного перекрытия	99
14.3. Съемка длиннофокусными камерами	100
14.4. Съемка в разное время года	101
14.5. Съемка со сплошными массивами леса	101
14.6. Уравнивание методом связок	101
14.7. Постановка связующих точек на границах протяженных объектов	102
Приложение А. Системы угловых элементов внешнего ориентирования	102

1. Назначение документа

Настоящий документ предназначен для получения подробной информации об уравнивании проектов в системе *PHOTOMOD*. Рассмотрены типы проектов и методы уравнивания блоков снимков центральной проекции и сканерных снимков, различия между этими методами, способы контроля точности уравнивания. Также описаны особенности уравнивания различных блоков снимков и сведения о контроле точности различных типов проектов на этапах обработки проектов в системе.

2. Общие сведения об уравнивании

В системе поддерживается уравнивание сети пространственной фототриангуляции как для снимков центральной проекции, так и для сканерных снимков.

Уравниванием называется процесс вычисления элементов внешнего ориентирования и последующее определение координат всех точек блока.

Для уравнивания необходимо внутреннее и взаимное ориентирование снимков блока.

Уравнивание выполняется после этапа сбора данных для фототриангуляции, внутреннего и взаимного ориентирования снимков, измерения координат опорных точек (см. руководство пользователя «Построение сети»).

Минимальным требованием для выполнения уравнивания блока является наличие внутреннего и взаимного ориентирования снимков.

Для уравнивания блока снимков необходима предварительная настройка параметров уравнивания — определение системы координат, выбор метода уравнивания, настройка основных параметров уравнивания, настройка параметров отчета и определение допусков на ошибки уравнивания.

Для уравнивания блока снимков центральной проекции в системе предусмотрены следующие методы уравнивания:

- Начальное приближение методом независимых маршрутов или по схеме блока используется в основном для выявления грубых ошибок, таких как неверно заданные координаты опорных точек, ошибки позиционирования связующих точек и т. д.;
- Метод независимых стереопар используется для повышения точности результатов уравнивания, полученных при расчете начального приближения; для выявления мелких ошибок и, в случае удовлетворительных результатов, для окончательного уравнивания;
- Метод связок используется для окончательного уравнивания блока;

Во многих случаях для выявления и исправления мелких ошибок целесообразно использовать поочередно метод независимых стереопар и метод связок.

 Свободная модель — уравнивание блока без данных геопривязки. Построение свободной модели позволяет сразу перейти к обработке проекта (векторизации, построению TIN и матриц высот). Таким образом, на момент получения координат опорных точек основная работа с проектом завершается.

После внутреннего и взаимного ориентирования снимков необходимо измерить координаты опорных точек и уравнять блок в выбранной системе координат. В результате все данные обработки проекта (векторные объекты, TIN, матрицы высот), созданные в свободной модели, трансформируются в выбранную геодезическую систему.

Для уравнивания блока сканерных снимков в системе предусмотрены следующие методы уравнивания:

- Строгий метод в методе учитываются элементы внешнего ориентирования из метаданных, полученных от поставщика данных дистанционного зондирования Земли (ДЗЗ);
- *RPC-метод* в методе используются RPC-коэффициенты из метаданных, полученных от поставщика продукта ДЗЗ;
- Универсальный метод в методе используется параллельно-перспективная модель или алгоритм Direct Linear Transformation (DLT), что позволяет обрабатывать любые сканерные изображения (в том числе IRS, LandSat, и др.), однако при этом требуется большее число опорных точек на стереопару по сравнению со строгим методом и методом, использующим RPC-коэффициенты;
- Импорт уравнивания импорт элементов внешнего ориентирования снимков из метаданных для проектов ADS 40/80/100.

После уравнивания блока снимков в системе предусмотрена возможность просмотра отчета для контроля точности, редактирования положения точек для устранения ошибок уравнивания, сохранение и экспорт результатов уравнивания и схемы блока. Также в системе предусмотрена возможность импорта результатов уравнивания, полученных в программных комплексах сторонних производителей для дальнейшей обработки проекта по этим данным.

3. Панель инструментов «Уравнивание блока»

Для уравнивания блока снимков предусмотрена дополнительная панель инструментов **Уравнивание блока**.

Чтобы отобразить панель инструментов, выберите **Ориентирование - Уравнивание блока** или нажмите на кнопку 🏕 основной панели инструментов системы.

Кнопки	Назначение						
	позволяет загрузить или восстановить текущее состояние блока (загрузить результаты уравнивания при загрузке проекта)						
1	позволяет открыть окно настройки параметров уравнивания блока (см. раздел 7 и раздел 8)						
√œ	позволяет запустить процесс уравнивания						
B	позволяет открыть окно с результатами уравнивания блока (см. раздел 10)						
	позволяет сохранить результаты уравнивания блока для перехода к следую- щему этапу обработки проекта в системе						
\$	позволяет вернуть исходное состояние блока						
2	[только для центральной проекции] экспорт исходных данных для дальнейшего использования в программных комплексах сторонних производителей						
₽	[только для центральной проекции] импорт результатов уравнивания, получен- ных в программных комплексах сторонних производителей						
×× ××	позволяет открыть окно для настройки параметров отображения точек триан- гуляции						
A	позволяет открыть окно каталога всех точек триангуляции (опорных, кон- трольных и связующих точек) и содержит инструменты для просмотра, поиска, редактирования, импорта и экспорта точек						
8	позволяет отобразить/скрыть окно со значениями средних квадратических, средних по модулю и максимальных ошибок уравнивания. Окно предназначено для быстрой оценки результатов без просмотра подробного отчета (см. раз- дел 6)						
6	позволяет отобразить/скрыть окно Атрибуты точки с информацией о выбран- ной точке и возможностью управления типом точек (см. раздел 5.5)						
	позволяет выделить на схеме блока типы точек, отмеченные в окне (см. раз- дел 5.5)						

Таблица 1. Панель инструментов «Уравнивание блока»

4. Пакетное уравнивание

В системе предусмотрена возможность уравнивания блока в пакетном режиме.

Для этого выполните следующие действия:

- 1. Запустите клиент/сервер распределенной обработки (подробнее см. раздел «*Распределенная обработка*» в руководстве пользователя «Общие сведения о системе»).
- 2. Выберите **Ориентирование > Уравнивание в пакетном режиме** или нажмите на кнопку на кнопку дополнительной панели инструментов **Триангуляция**. Открывается окно **Параметры**.

- 3. Настройте параметры уравнивания в зависимости от типа проекта центральная проекция или сканерная съемка (см. раздел 7 или раздел 8).
- 4. Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

5. Настройка параметров отображения точек

5.1. Параметры отображения точек и ошибок на схеме блока

В системе предусмотрена настройка отображения точек триангуляции на схеме блока, а также отображения ошибок на точках.

Для настройки отображения точек и ошибок служит окно **Параметры отображения**. Чтобы открыть окно, нажмите на кнопку 💥 панели инструментов **Уравнивание блока**.

Параметры отображения
800 😽 😽
Режим: Схема блока
Параметры отображения точки
Способ отображения
 символами
🔘 точками
Размер точки 5 👘 пикс.
Показывать имена
🔘 всех
выбранных
🔘 не показывать
Отображать ошибки
🔽 По опоре XY
🔽 По опоре Z
📝 По связи между стереопарами ХҮ
📝 По связи между стереопарами Z
📝 По связи на снимках
🔲 На исключенных точках
Масштаб отображения ошибок
о реальный
Увеличение 10.0
🔘 условный
Масштаб 100.0 📩 пикс./м

Рис. 1. Параметры отображения точек триангуляции

Панель инструментов окна состоит из кнопок для выполнения следующих действий:

• 📴 — позволяет отобразить список условных обозначений точек на схеме блока;

• 🎇 — позволяет включить фильтр отображения точек триангуляции;

• 🙀 — позволяет настроить фильтр отображения точек триангуляции.

В поле Режим отображается выбранный режим схемы блока просмотра и зависит от активного 2D-окна — Схема блока или Изображение.

В 2D-окне стереопары точки триангуляции не отображаются.

Раздел Параметры отображения точки позволяет настроить следующие параметры:

- Способ отображения точек:
 - о символами точки отображаются символами;
 - о точками точки отображаются в виде «точек» задарного размера в пикселах.
- Показывать имена следующих точек в 2D-окне:
 - о **всех** точек;
 - о **выбранных** точек;
 - не показывать имена точек на схеме блока.

Раздел **Отображать ошибки** позволяет выбрать ошибки различных типов для отображения в 2D-окне:

- По опоре ХҮ вектор с началом в точке с вычисленными координатами и направленный в точку с исходными координатами; на конце маленькая окружность;
- По опоре Z вертикальный вектор, на конце маленькая горизонтальная черта.

Векторы **По опоре ХҮ** и **По опоре Z** отображаются зеленым цветом, если значение ошибки находится в пределах заданного допуска, и красным цветом в случае превышения допуска.

- По связи между стереопарами XY косой крест с размерами, пропорциональными величине ошибок по X и Y;
- По связи между стереопарами Z вертикальная линия, направленная симметрично вверх и вниз относительно точки; ее размер соответствует величине ошибки по Z;
- По связи на снимках окружность с центром в точке и размерами, пропорциональными величине ошибок.

Векторы, упомянутые выше, отображаются темно-зеленым, если ошибка лежит в пределах заданного допуска, и темно-красным в случае превышения допуска.

Векторы ошибок по связи не отображаются в 2D-окне отдельного изображения.

Также настроить отображение векторов ошибок в зависимости от величины ошибки позволяют соответствующие флажки в разделе **Дополнительно** окна **Фильтр точек** (см. раздел 5.3);

Флажок На исключенных точках позволяет отобразить ошибки для точек, не включенных в уравнивание.

Раздел Масштаб отображения ошибок позволяет управлять размером отображения векторов ошибок на схеме блока в соответствии с выбранным масштабом:

- реальный масштаб размер вектора ошибки (окружности с перекрестьями) соответствует масштабу схемы, то есть для ошибок на опорных/контрольных точках конец вектора ошибки при увеличении «*x1*» (один к одному) указывает в точку с заданными пользователем координатами, что позволяет увидеть положение ошибочно опознанных опорных точек. Векторы при этом увеличиваются и уменьшаются при увеличении и уменьшении схемы (см. раздел 5.2);
- условный масштаб в поле ввода задается количество единиц системы координат (пикс./м).

5.2. Настройка условных обозначений точек

На схеме блока каждый тип точек имеет отдельное условное обозначение и цвет.

Окно **Условные обозначения** позволяет отобразить список условных обозначений точек, изменить их цвет и символ. Чтобы открыть окно, нажмите на кнопку **з** панели инструментов окна **Параметры отображения**.

😎 Условные обозначения
По координатам
Форма знака
Плановая точка
🔵 Высотная точка
🛆 Планово-высотная точка
Цвет знака
🛆 Опорная точка
🛆 Контрольная точка
Исключенная точка
По связи
Маршрутные точки
🖉 🔿 Одиночная точка
🖉 🔷 Точка измерена на одной стереопаре
🖉 🔷 Точка измерена в тройном или более перекрытии
🖋 🔿 Точка измерена на несмежных снимках
🖉 🔿 Точка измерена на стереопаре и несмежных с ней снимка»
Межмаршрутные точки
🖉 🔷 Точка измерена на одиночных снимках в маршрутах
🖉 🛇 Точка измерена на стереопарах
🖉 🔷 Точка измерена на стереопарах и триплетах
🖉 🔷 Точка измерена на стереопарах и одиночных снимках
🖉 🔿 Точка измерена на стереопарах и несмежных снимках
🖉 🔿 Точка измерена на несмежных снимках
Прочее
Исключенная точка
[] Неуравненная точка
🗸 Точка сгущения
🔷 Центр проекции
۲ (III) (IIII) (III) (I
Знак: 🖲 🛇 💿 🗢 🗖 Цвет:
ОК Сброс Отмена

Рис. 2. Окно «Условные обозначения»

Для точек с известными координатами используются следующие символы:

- плановые квадрат 🧾;
- высотные окружность ();
- планово-высотные треугольник 🔼.

Для точек с известными координатами используются следующие цвета символов:

- опорные красный 🔼;
- контрольные черный 🛆;
- исключенные из уравнивания белый 🔼.

Для *связующих маршрутных* точек по умолчанию используются следующие формы и цвета условных обозначений:

- одиночная точка черная окружность;
- измерена на одной стереопаре желтый ромб;
- измерена в тройном или более перекрытии зеленый ромб;
- измерена на несмежных снимках красная окружность;
- измерена на стереопаре и несмежных с ней снимках красная окружность.

Для *связующих межмаршрутных* точек по умолчанию используются следующие формы и цвета условных обозначений:

- измерена на одиночных снимках в маршрутах малиновый ромб;
- измерена на стереопарах бирюзовый ромб;
- измерена на стереопарах и триплетах бирюзовый ромб;
- измерена на стереопарах и одиночных снимках малиновый ромб;
- измерена на стереопарах и несмежных снимках красная окружность;
- измерена на несмежных снимках красная окружность.

Для прочих точек предусмотрены следующие формы и цвета условных обозначений:

- исключенные белые квадратные скобки];
- неуравненные красные квадратные скобки;
- *точки сгущения* черный перевернуый треугольник V;
- центры проекции (Р) черный ромб 🔷.

Изображение точки на схеме блока может состоять как из одного, так и из двух и более символов.

Для изменения цвета или символа условного знака связующих (как маршрутных, так и межмаршрутных) точек выполните следующие действия:

1. [опционально] Нажмите на кнопку 💥 панели инструментов **Уравнивание блока**, чтобы отобразить окно **Параметры отображения**.

- Нажмите на кнопку панели инструментов окна Параметры отображения.
 Открывается окно Условные обозначения.
- 3. В разделе **По связи** выделите тип точки для изменения условного знака или цвета.
- 4. Выберите **Знак** для выбора формы точки окружность ○, ромб ◊ или квадрат □.
- 5. Щелкните в поле **Цвет** и выберите необходимый цвет из стандартной палитры *Windows*.
- 6. [опционально] Для возврата к условным знакам, настроенным по умолчанию, служит кнопка **Сброс**.
- 7. Нажмите ОК для подтверждения внесенных изменений.

5.3. Фильтр точек

В системе предусмотрена возможность выбора точек, которые отображаются на схеме блока и в таблице **Точки триангуляции**. Для этого служит окно **Фильтр точек**.

Чтобы открыть окно Фильтр точек, нажмите на кнопку 🙀 в окне Параметры отображения.

😝 Фильтр точек	×
 Фильтр точек По координатам Опорные Г контрольные геодезические Г исключенные геодезические Г плановые Г плановые Г плановые Г плановые Г плановые Г координаты не заданы есе По связи Г стереопара Г триплет Г мехмаршрутные Г непренесенные И используемые 	Дополнительно ♥ наземные ♥ с сущения ♥ центры проекции ■ чеуравненные ♥ с измененным типом по величине ошибок по величине ошибок наихудшие точки 10 ● с превышением допуска ♥ опорные ХҮ ♥ опорные ХҮ ♥ связующие в стереопарах ХҮ ♥ связующие в стереопарах Z ♥ связующие на снимках
✓ исключенные ✓ все	 на выбранных моделях в объединении в пересечении ОК Отмена

Рис. 3. Окно «Фильтр точек»

Для отображения точек на схеме блока используются специальные символы — условные знаки.

Окно Фильтр точек содержит следующие разделы для выбора точек, которые отображаются на схеме блока, по различным критериям:

- раздел По координатам служит для выбора точек в зависимости от их координат:
 - о опорные точки (наземные и центры проекций);
 - контрольные точки (наземные и центры проекций);
 - исключенные геодезические точки с известными координатами, исключенные из уравнивания;
 - координаты не заданы точки без геодезических координат (при снятом флажке отображаются только опорные точки);
 - все позволяет устновить/снять выбор всех точек раздела.

Флажки планово-высотные, плановые и высотные точки позволяют выбрать тип отображаемых опорных, контрольных и исключенных геодезических точек.

- раздел По связи служит для выбора точек в зависимости от количества измерений координат точки на снимках:
 - о одиночные точки, не имеющие измерений ни на одной стереопаре;
 - о стереопара точки с измерениями хотя бы на одной стереопаре;
 - триплет точки с измерениями хотя бы в одном триплете;
 - межмаршрутные точки, измеренные в межмаршрутном перекрытии;
 - неперенесенные связующие точки, не имеющие измерений на соседних снимках;
 - о используемые связующие точки, используемые при уравнивании;
 - исключенные связующие точки, исключенные из уравнивания;
 - все позволяет устновить/снять выбор всех точек раздела.
- раздел Дополнительно служит для выбора точек в зависимости от их типа:
 - наземные связующие точки, не являющиеся точками сгущения и центрами проекции;
 - о точки **сгущения**;

- центры проекции;
- неуравненные точки, которые не участвовали в уравнивании;
- с измененным типом точки, тип которых был изменен при уравнивании.
- раздел По величине ошибок служит для отображения векторов ошибок на точках в зависимости от величины ошибки:
 - **наихудшие точки** точки с максимальными ошибками (количество отображаемых точек задается в соответствующем поле);
 - с превышением допуска точки с ошибками, превышающими допустимые значения.

Значения допусков на ошибки задаются в окне Параметры на закладке Отчет (см. раздел 7.4).

Отображение точек по величине ошибок осуществляется с использованием дополнительных флажков Опорные XY, Опорные Z, Связующие в стереопарах XY, Связующие в стереопарах Z и связующие на снимках.

Также отобразить векторы ошибок позволяют соответствующие флажки в разделе Отображать ошибки окна Параметры отображения.

- На выбранных моделях служит для отображения точек, которые находятся в области выделения стереопары/маршрута либо нескольких стереопар/маршрутов:
 - В объединении точки находятся хотя бы в одной области выделения;
 - В пересечении точки находятся одновременно во всех выделенных областях.

5.4. Выделение точек

Точки триангуляции на схеме блока выделяются с использованием стандартных инструментов выделения. Для переключения режима выделения служит меню **Редактирование | Групповое выделение**, а также дополнительная панель инструментов **Инструменты** (см. раздел *Выделение векторных объектов* руководства пользователя «Векторизация»).

Также в системе предусмотрена возможность выделения точек на схеме блока по типу точки.

Чтобы выбрать точки для выделения, нажмите на кнопку 🌺. Открывается окно Выделение точек.

ю координатам	Дополнительно
📝 опорные	📝 наземные
🔽 📝 контрольные	🔽 🗹 сгущения
🔽 исключенные геодезические	🛇 📝 центры проекции
🔼 📝 планово-высотные	🔲 🗹 неуравненные
🗾 📝 плановые	🔽 с измененным типом
🔘 📝 высотные	
координаты не заданы	по величине ошибок
V BCE	О наихудшие точки 10
о связи	с превышением допуска
🗸 🔽 одиночные	
🔽 стереопара	✓ опорные ХҮ
🛛 🔽 триплет	опорные Z
» 📝 межмаршрутные	связующие в стереопарах ХҮ
🗸 неперенесенные	✓ связующие в стереопарах Z
🗸 используемые	✓ связующие на снимках
исключенные	
📝 все	на выоранных моделях
	🔘 в объединении
	в пересечении

Рис. 4. Окно «Выделение точек»

Для отображения точек на схеме блока используются специальные символы — условные знаки (см. раздел 5.2).

Окно Выделение точек содержит следующие разделы, которые используются для выделения точек по различным критериям:

- раздел По координатам служит для выбора точек в зависимости от их координат:
 - о **опорные** точки (наземные и центры проекций);
 - контрольные точки (наземные и центры проекций);
 - исключенные геодезические точки с известными координатами, исключенные из уравнивания;
 - координаты не заданы точки без геодезических координат (при снятом флажке отображаются только опорные точки);
 - все позволяет устновить/снять выбор всех точек раздела.

Флажки планово-высотные, плановые и высотные точки позволяют выбрать тип отображаемых опорных, контрольных и исключенных геодезических точек.

- раздел По связи служит для выбора точек в зависимости от количества измерений координат точки на снимках:
 - о **одиночные** точки, не имеющие измерений ни на одной стереопаре;

- о стереопара точки с измерениями хотя бы на одной стереопаре;
- триплет точки с измерениями хотя бы в одном триплете;
- межмаршрутные точки, измеренные в межмаршрутном перекрытии;
- неперенесенные связующие точки, не имеющие измерений на соседних снимках;
- о используемые связующие точки, используемые при уравнивании;
- о исключенные связующие точки, исключенные из уравнивания;
- все позволяет устновить/снять выбор всех точек раздела.
- раздел Дополнительно служит для выбора точек в зависимости от их типа:
 - наземные связующие точки, не являющиеся точками сгущения и центрами проекции;
 - о точки **сгущения**;
 - центры проекции;
 - неуравненные точки, которые не участвовали в уравнивании;
 - с измененным типом точки, тип которых был изменен при уравнивании.
- раздел По величине ошибок служит для отображения векторов ошибок на точках в зависимости от величины ошибки:
 - наихудшие точки точки с максимальными ошибками (количество отображаемых точек задается в соответствующем поле);
 - с превышением допуска точки с ошибками, превышающими допустимые значения.

3начения допусков на ошибки задаются в окне **Параметры** на закладке **Отчет** (см. раздел 7.4).

Отображение точек по величине ошибок осуществляется с использованием дополнительных флажков Опорные ХҮ, Опорные Z, Связующие в стереопарах ХҮ, Связующие в стереопарах Z и связующие на снимках.

Также отобразить векторы ошибок позволяют соответствующие флажки в разделе Отображать ошибки окна Параметры отображения.

- На выбранных моделях служит для отображения точек, которые находятся в области выделения стереопары/маршрута либо нескольких стереопар/маршрутов:
 - В объединении точки находятся хотя бы в одной области выделения;
 - В пересечении точки находятся одновременно во всех выделенных областях.

Кнопки Выделить, Добавить, Обратить и Вычесть предназначены для проведения соответствующих операций с выбранными типами точек.

5.5. Окно «Атрибуты точки»

В системе предусмотрена возможность отображения таких свойств точек триангуляции, как тип, координаты и измерения. Для этого служит окно **Атрибуты точки**.

Чтобы открыть окно Атрибуты точки, нажмите на кнопку 🇞 панели инструментов Уравнивание блока.

Атрибуты точки 📧
Выбранная точка
~65
Тип по координатам
Спорная
*Д Контрольная
📩 🗌 Исключена
🔺 Координаты
Тип по связи
🗙 🔽 Связующая
📩 🗌 Исключена
во Измерить
П. Геолезия
🗼 исходные координаты
исходные точности
🛓 уравненные координаты
🚊 Ошибки на снимках
і́ ошибки (max)
🚊 количество снимков
6
🚊 Ошибки по стереопарам
🚊 ошибки (max)
— Ex: 0.0217 м
Еу: 0.0345 м
Ez: 0.0449 м
Exy: 0.0408 м
— количество стереопар
···· 3
<u>⊕</u> . по стереопарам
і́в. Тип
⊕ Снимки

Рис. 5. Окно «Атрибуты точки» для выделенной точки

Окно **Атрибуты точки** состоит из двух разделов: в верхней части окна отображается панель редактирования; в нижней части окна — информационная панель.

В поле Выбранная точка отображается название выделенной точки, если выделена одна точка, либо сообщение о количестве выделенных точек.

Тип выделенной точки отмечен флажком в соответствующем поле раздела Тип по координатам.

Раздел Тип по координатам содержит кнопки для выполнения следующих операций:

- 📩 позволяет сделать выделенную точку опорной;
- 📩 позволяет сделать выделенную точку контрольной;
- 📩 позволяет исключить выделенную контрольную/опорную точку из последующего уравнивания;
- 🔭 позволяет добавить исключенную точку в уравнивание;
- 📩 позволяет исключить связующую точку из последующего уравнивания.

При выделении группы точек одного типа, кнопки позволяют изменить тип всех выделенных точек.

Чтобы изменить положение выбранной опорной точки, в разделе **Тип по координатам** нажмите на кнопку **Мара Координаты**. Открывается окно **Точки триангуляции**. Двойной щелчок по имени точки позволяет открыть модуль **Измерение точек** для изменения положения точки (см. руководство пользователя «Построение сети»).

Чтобы изменить положение выбранной связующей точки, в разделе **Тип по связи** нажмите на кнопку **Ш Измерить**. Открывается окно **Измерение точек**, в котором отображается связующая точка на снимках блока (см. раздел 11).

Раздел в нижней части окна Атрибуты точки содержит информацию о выбранной точке.

Раздел содержит информацию только в том случае, если выделена *только одна* точка на схеме блока.

В разделе отображаются следующие свойства выделенной точки:

- Геодезия информация об опорных и контрольных точках:
 - исходные координаты исходные (заданные пользователем) координаты точки;
 - о исходные точности исходные веса координат выделенной точки;

- уравненные координаты координаты точки, полученные при уравнивании;
- о ошибки.
- Ошибки на снимках:
 - о **ошибки (max)** максимальные ошибки на снимках для выделенной точки;
 - количество снимков, на которых измерены координаты выделенной точки;
 - снимки список снимков, на которых измерены координаты точки. Для каждого из этих снимков выводятся ошибки по связи (до среднего уравненного положения) и сами измерения точки на снимке, координаты проекции уравненного положения точки на снимок, а для опорных и контрольных точек также координаты проекции исходных геодезических координат на снимок.
- Ошибки по стереопарам:
 - о **ошибки (max)** максимальные ошибки для выделенной точки;
 - о количество стереопар, на которых измерены координаты выделенной точки;
 - по стереопарам отображаются ошибки от среднего и взаимные ошибки для каждой стереопары, на которой измерены координаты точки.
- Тип информация о типе точки; является ли центром проектирования или наземной точкой, а также указывается код выделенной точки (код снимка для центров проекций);
- Снимки список изображений, на которых измерены координаты выделенной точки;
- Маршруты список маршрутов, на которых измерены координаты выделенной точки (хотя бы на одном снимке).

5.6. Список точек триангуляции

В системе предусмотрена возможность просмотра, поиска и редактирования точек триангуляции. Для этого служит окно **Точки триангуляции**.

Чтобы открыть окно **Точки триангуляции**, нажмите на кнопку 種 панели инструментов **Уравнивание блока** или выберите **Окна - Координаты точек триангуля**ции.

😎 Tou	ки триангу	ляции									• X
.	. 💦 🕅	1 🛃 🐼 🔭 🗈	•								
Код	Имя 🔺	Тип	Х	Y	Z	X'	Y'	Z'	dX	dY	dZ
5	0551	Опорная	4969403.120000	6444320.640000	134.840000	4969403.173226	6444320.625178	134.802470	0.053226	-0.014822	-0.037530
1	0556	Опорная	4971037.270000	6444373.220000	129.630000	4971037.286464	6444373.160288	129.607834	0.016464	-0.059712	-0.022166
10	0904	Контрольная	4970040.520000	6443598.940000	129.000000	4970040.389812	6443598.945856	128.970597	-0.130188	0.005856	-0.029403
4	0906	Опорная	4969867.500000	6444567.540000	130.340000	4969867.508498	6444567.471081	130.289626	0.008498	-0.068919	-0.050374
3	0908	Опорная	4970281.380000	6444471.620000	130.590000	4970281.305273	6444471.586296	130.650949	-0.074727	-0.033704	0.060949
2	0911	Опорная	4970710.750000	6444342.650000	129.100000	4970710.808886	6444342.739507	129.156246	0.058886	0.089507	0.056246
9	1004	Опорная	4969846.860000	6442930.370000	146.180000	4969846.814820	6442930.348267	146.227618	-0.045180	-0.021733	0.047618
7	1009	Опорная	4970639.770000	6442967.290000	180.830000	4970639.834297	6442967.335250	180.765005	0.064297	0.045250	-0.064995
6	1010	Опорная	4970965.650000	6443051.460000	172.220000	4970965.707807	6443051.537811	172.208139	0.057807	0.077811	-0.011861
8	OT31	Опорная	4970211.490000	6442953.400000	160.920000	4970211.427885	6442953.346268	160.936126	-0.062115	-0.053732	0.016126
11	OT34	Опорная	4969470.390000	6442963.690000	132.140000	4969470.312843	6442963.730060	132.146020	-0.077157	0.040060	0.006020
Обновить Закрыть						Закрыть					

Рис. 6. Окно «Точки триангуляции»

Окно Точки триангуляции содержит панель инструментов с кнопками для выполнения следующих действий:

- 🎇 позволяет включить фильтр отображения в 2D-окне точек триангуляции;
- 🐜 позволяет настроить фильтр отображения точек триангуляции;
- тозволяет отобразить только выделенные на схеме блока/все точки в таблице;
- 🚧 служит для поиска точек по имени или его части;
- позволяет отобразить опорные/контрольные точки с исходными координатами, введенными в каталог координат опорных точек (см. раздел Каталог опорных точек руководства пользователя «Построение сети»);
- 🛃 позволяет отобразить точки триангуляции с координатами, полученными после уравнивания;
- 🍢 позволяет отобразить только значения ошибок на точках;
- - позволяет экспортировать точки триангуляции в файл с расширением *.csv.

Кнопка Обновить служит для обновления данных в таблице точек триангуляции после внесения изменений.

Список точек триангуляции представляет собой таблицу со следующими столбцами:

• Код — код точки;

- Имя имя точки;
- Тип тип точки (связующая, опорная, контрольная, исключенная);
- Х, Ү, Z исходные координаты опорной/контрольной точки;
- Х', Y', Z' уравненные координаты опорной/контрольной точки;
- dX, dY, dZ значения ошибок на точке триангуляции.

Окно **Точки триангуляции** синхронизировано с 2D-окном: при выделении точки в 2D-окне точка также выделяется в таблице. При двойном щелчке в таблице по строке с точкой открывается модуль **Измерение точек** для редактирования положения точки.

В системе предусмотрена возможность редактирования положения точек триангуляции, выделенных в 2D-окне, в модуле **Измерение точек**. Для этого выполните следующие действия:

- 1. Выделите точки 2D-окне (см. раздел «Выделение объектов» руководства пользователя «Векторизация»).
- 2. В окне **Точки триангуляции** нажмите на кнопку **56**, чтобы отобразить в таблице только точки, выделенные в 2D-окне.
- 3. В окне Атрибуты точки нажмите на кнопку **Ш Измерить**. Открывается модуль Измерение точек (см. раздел 11).

В окне Точки триангуляции отображается список только тех точек, которые были выделены в 2D-окне.

4. Отредактируйте положение точек и нажмите ОК для возврата на этап уравнивания сети.

6. Краткий отчет об ошибках

В системе предусмотрена возможность отображения краткого отчета об ошибках, который содержит значения средних квадратических ошибок, средних по модулю и максимальных ошибок уравнивания.

Краткий отчет об ошибках используется для быстрой оценки результатов уравнивания без просмотра подробного отчета.

Чтобы отобразить краткий отчет об ошибках, нажмите на кнопку **Б** панели инструментов **Уравнивание блока**. Открывается окно **Ошибки**.

Рис. 7. Окно «Ошибки»

Краткий отчет содержит информацию о средних ошибках на опорных и контрольных точках (в метрах), о связующих, точках сгущения, ошибки по связи на центрах проекции (*взаимные* ошибки и *от среднего*), а также ошибки в стереопарах и ошибки на снимках.

При уравнивании методом связок также рассчитывается значение Сигма_0.

Значение Сигма_0 показывает, насколько ошибки уравнивания соответствуют априорной точности измерения координат точек и входных опорных данных (координаты опорных точек, центров проекции). Если априорные точности заданы верно, значение Сигма_0 принимает значение, близкое к 1 (±30%).

Значение Сигма_0 значительно больше 1 указывает на ошибки в измерениях координат точек, во входных опорных данных либо на неправильно заданные допусков на измерения координат точек. Если Сигма_0 значительно меньше 1, то были неправильно заданы допуски на измерения координат точек либо существуют другие ошибки (см. раздел 10).

7. Уравнивание блока снимков центральной проекции

7.1. Порядок работы при уравнивании блока снимков центральной проекции

В системе предусмотрена возможность обработки снимков центральной проекции.

К снимкам центральной проекции относят аэрофотоснимки, и космические снимки центральной проекции (см. руководство пользователя «Создание проекта»).

Для настройки параметров уравнивания блока снимков центральной проекции, выбора метода уравнивания и модели уравнивания служит окно **Параметры**.

Чтобы открыть окно Параметры, нажмите на кнопку 📓 панели инструментов Уравнивание блока.

😎 Параметры	
Система координат Уравнивание Отчет	
Метод расчета начального приближ.	Отбраковка связующих точек
 независимых маршрутов 	П наихудшие 10
🔘 по схеме блока	
Настройка начального приближ.	Отбраковывать на одной итерации:
Использовать текущее решение	1 точек
Метод уравнивания	Учет систематических ошибок
🔘 оставить начальное приближение	Самокалибровка параметров камеры
🔘 независимых стереопар	🔲 Включить самокалибровку 😰
• связок	Настройка самокалибровки
Настройка уравнивания	Пастройка самокалноровки
	🕅 Уравнивать подблок
Свободная модель	Выбор подблока
Свободная	Проверка корректности
🔘 по схеме блока	
Базис, м 800.0	
ОК Ураг	внять Отмена

Рис. 8. Параметры уравнивания блока снимков центральной проекции

Для настройки параметров уравнивания выполните следующие действия:

- 1. На закладке Система координат определите систему координат проекта.
- 2. На закладке **Уравнивание** выберите метод уравнивания и настройте основные параметры уравнивания.
- 3. На закладке **Отчет** настройте отображение результатов уравнивания в отчете и определите допуски на ошибки уравнивания.
- 4. Нажмите на кнопку **Уравнять**, чтобы запустить процесс уравнивания или нажмите ОК, чтобы сохранить настройки и закрыть окно **Параметры**.

7.2. Закладка «Система координат»

Закладка Система координат позволяет задать систему координат, если она не была задана на этапе создания проекта, или изменить текущую систему координат (см. раздел «Выбор системы координат» в руководстве пользователя «Создание проекта»).

Для уравнивания блока в свободной модели определение системы координат не требуется.

Параметры	
Система координат Уравнивание Отчет	
Система координат	
Декартова правая (Декартова правая локальная система координат)	Выбрать 🕘
Ориентация осей: правая тройка, геод. привязка: локальная (условная) сис	тема координат
ОК Уравнять Отмена	

Рис. 9. Параметры уравнивания

7.3. Закладка «Уравнивание»

7.3.1. Параметры уравнивания снимков центральной проекции

Закладка Уравнивание позволяет выбрать метод и модель уравнивания блока снимков центральной проекции, а также настроить параметры уравнивания.

Система координат	равнивание Отчет					
Метод расчета начал	ьного приближ.	Отбраковка связующих точек				
независимых марь	шрутов	П наихудшие 10				
💿 по схеме блока						
Настройка нача	ального приближ					
- Haciponica Hard	ananoro npronusa	Отораковывать на однои итерации:				
🔲 Использовать теку	/щее решение	1 точек				
Метод уравнивания		Учет систематических ошибок				
🔘 оставить начально	ре приближение	Самокалибровка параметров камеры				
🔘 независимых стер	еопар	🔲 Включить самокалибровку 🛛				
Связок		Настройка самокалибровки				
Настройка	уравнивания					
	,	🕅 Уравнивать подблок				
Свободная модель		Выбор подблока				
привязка модели						
освооодная		📝 Проверка корректности				
🔘 по схеме блока	а					
Базис, м	800.0					

Рис. 10. Параметры уравнивания

Для настройки параметров уравнивания снимков центральной проекции проверьте наличие данных геопривязки (измеренных координат опорных точек или элементов внешнего ориентирования) и выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов Уравнивание блока. Открывается окно Параметры.
- 2. Перейдите на закладку Уравнивание.
- В случае, если данные геопривязки отсутствуют или их недостаточно, рекомендуется проводить уравнивание в свободной модели. Для этого установите флажок Свободная модель и выберите один из следующих типов привязки модели:
 - свободная в результате уравнивания осуществляется поворот, масштабирование и сдвиг координат центров проекции таким образом, что координаты X,Y,Z центра проекции первого снимка блока имеют значения 0,0,0, а второго — b,0,0, где b — значение базиса в метрах, заданное в поле Базис;
 - по схеме блока в результате уравнивания осуществляется поворот, масштабирование и сдвиг координат центров проекции в соответствии с накидным монтажом.

Уравнивание в свободной модели позволяет произвести контроль измерений связующих точек.

- 4. В разделе **Метод расчета начального приближения** выберите метод и настройте параметры расчета начального приближения:
 - независимых маршрутов при уравнивании предварительно строятся независимые модели по снимкам каждого маршрута (с использованием внутримаршрутных связующих точек), затем объединяются в общую модель, после чего происходит ориентирование по опорным точкам в выбранной геодезической системе координат;

- по схеме блока при уравнивании используется текущий накидной монтаж схемы блока для приблизительного уравнивания по результатам всех измерений блока.
- [опционально] Для того чтобы использовать предыдущие результаты уравнивания при запуске процесса, установите Использовать текущее решение.
 Это позволяет использовать результаты, полученные на предыдущем шаге уравнивания и не рассчитывать значения повторно.

Используется в случаях, когда итерационный процесс уравнивания не сходится, уточняются какие-либо измерения и процесс запускается заново, например, при недостаточных или плохих измерениях точек в тройном перекрытии, для блоков снимков с БПЛА.

- 6. В разделе **Метод уравнивания** выберите метод уравнивания и настройте параметры выбранного метода:
 - оставить начальное приближение построение сети по результатам начального приближения;
 - Используется для поиска грубых ошибок, таких как неправильно заданные координаты опорных точек,
 - Для «грубого» уравнивания блока снимков, полученных БПЛА, установите флажок оставить начальное приближение и уравняйте блок с Методом расчета начального приближения по схеме блока.
 - независимых стереопар предварительное построение сети по стереопарам независимых моделей с последующим соединением их в единый блок и ориентирование блочной сети в геодезической системе координат;
 - **СВЯЗОК** построение и уравнивание сети одновременно по всем снимкам, используется для окончательного уравнивания.

- 7. В разделе **Отбраковка связующих точек** задайте условия отбраковки точек триангуляции:
 - наихудшие для отбраковки заданного количества связующих точек с наибольшими ошибками;
 - с превышением допуска для отбраковки связующих точек, на которых значения ошибок превышают установленный допуск (на закладке Отчет).
- 8. В поле **Отбраковывать на одной итерации** введите количество точек для отбраковки (в соответствии с заданными условиями отбраковки) на каждом шаге итерационного процесса уравнивания.
- 9. [опционально] Для автоматического вычисления и компенсации систематических ошибок измерений бортовых элементов внешнего ориентирования нажмите на кнопку **Учет систематических ошибок**.
- 10. [опционально] Чтобы автоматически вычислить параметры камеры в процессе уравнивания (если в проекте используется неполный набор данных камеры или необходимо их уточнить), установите флажок Включить самокалибровку камеры и нажмите на кнопку Настройка самокалибровки.
- 11. [опционально] Для выбора изображений проекта для уравнивания установите флажок **Уравнивать подблок** и нажмите на кнопку **Выбор подблока**.
- 12. Флажок **Проверка корректности** позволяет проверить наличие всех исходных данных, необходимых для уравнивания. Если данных недостаточно, выдается сообщение об ошибке и уравнивание не запускается.

При выборе **метода расчета начальных приближений** — по схеме блока и уравнивания методом связок, проверка корректности исходных данных не учитывается независимо от установленного флажка.

13. Нажмите ОК для сохранения параметров или **Уравнять** для запуска процесса уравнивания.

7.3.2. Уравнивание в свободной модели

Уравнивание в свободной модели позволяет уравнять блок без данных геопривязки и служит для выявления грубых ошибок на связующих точках.

Для уравнивания блока в свободной модели выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов **Уравнивание блока**. Открывается окно **Параметры**.
- 2. Перейдите на закладку Уравнивание.

- 3. Установите флажок Свободная модель.
- 4. Выберите один из следующих типов привязки модели:
 - свободная в результате уравнивания осуществляется поворот, масштабирование и сдвиг координат центров проекции таким образом, что координаты X,Y,Z центра проекции первого снимка блока имеют значения 0,0,0, а второго — b,0,0, где b — значение базиса в метрах, заданное в поле Базис;
 - по схеме блока в результате уравнивания осуществляется поворот, масштабирование и сдвиг координат центров проекции в соответствии с накидным монтажом.
- 5. Настройте остальные параметры уравнивания.

После внутреннего и взаимного ориентирования снимков необходимо измерить координаты опорных точек и уравнять блок в выбранной системе координат.

Чтобы после уравнивания в свободной модели уравнять блок в выбранной системе координат, выполните следующие действия:

- 1. Уравняйте блок в свободной модели.
- 2. Измерьте координаты как минимум трех опорных точек либо загрузите данные о не менее чем трех центрах проекций.
- 3. На закладке **Уравнивание** окна **Параметры** снимите флажок **Свободная модель**.
- 4. Установите флажок Использовать текущее решение.
- 5. В разделе Метод уравнивания выберите Оставить начальное приближение.
- Уравняйте блок. В результате все данные обработки проекта (векторные объекты, TIN, матрицы высот), созданные в свободной модели, трансформируются в выбранную геодезическую систему координат.

7.3.3. Метод независимых маршрутов

Метод независимых маршрутов используется для расчета начального приближения. Данный метод заключается в предварительном построении независимых моделей по снимкам каждого маршрута (с использованием внутримаршрутных связующих точек) и соединении этих моделей в единую модель с последующим ее ориентированием по опорным точкам в геодезической системе координат.

Метод независимых маршрутов применяется, в основном, для выявления грубых ошибок, таких как неверно заданные координаты опорных точек или ошибки позиционирования связующих точек.

Перед уравниванием *методом независимых маршрутов* проверьте направление системы координат. В случае, если система координат развернута на 180° относительно геодезической СК, выполните одно из следующих действий:

- измените порядок маршрутов на обратный;
- измените порядок снимков в маршруте на обратный;
- разверните все снимки на 180°;
- используйте другую систему координат с противоположной ориентацией осей;
- измените знаки у координат X и Y всех опорных точек на противоположный (только при уравнивании в Декартовой системе координат).

Для вычисления начального приближения *методом независимых маршрутов* выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов **Уравнивание блока**. Открывается окно **Параметры**.
- 2. Перейдите на закладку Уравнивание.
- 3. В разделе **Метод расчета начального приближения** выберите метод **неза**висимых маршрутов.
- 4. Нажмите на кнопку Настройка начального приближения. Открывается окно Параметры метода независимых маршрутов.

😓 Параметры метода независимых маршрутов				
Максимальное отстояние точек (в базисах)	1000	Веса уравнений		
Максимальная длина маршрута	20	связующие	1.00	
(количество снимков)	20	опорные точки	1.00	
Точность уравнивания: 0.5		центры проекции	1.00	
· · · · · · ·	1 1 1 1 1	связь - центры проекции	1.00	
ниже выше		🗹 Использовать координаты опорных точек		
		🔽 Использовать координаты центро	в проекции	
	ОК	Отмена		

Рис. 11. Окно «Параметры метода независимых маршрутов»

- 5. Задайте **Максимальное отстояние точек (в базисах)**. Параметр используется при обработке проектов наземной фотограмметрии, в которых измерены точки с большой разницей продольных параллаксов.
 - В результате применения этого параметра в каждой стереопаре автоматически исключаются из уравнивания точки, расстояние от которых до центров фотографирования превышает заданное значение расстояния в базисах. Например, если базис стереопары равен 10 м, а заданное значение максимального отстояния 100, то будут исключены точки, которые находятся на расстоянии более 1000 м от центров фотографирования.

Рекомендуется задавать значение не более 100 базисов, так как при включении в уравнивание точек с расстоянием более 100 базисов съемки, метод независимых маршрутов (и стереопар) может не сходиться или давать результат с большими ошибками.

- В случае если отсутствуют грубые ошибки в измерениях, уменьшение значения Максимальное отстояние точек (в базисах) приводит к уменьшению СКО по блоку. Слишком маленькое значение приводит к прерыванию процесса уравнивания и сообщению об ошибке из-за недостаточного количества связующих точек в тройном перекрытии.
- 6. В поле ввода Максимальная длина маршрута (количество снимков) задайте количество снимков, на которое разбивается каждый маршрут. Этот параметр используется для уменьшения количества систематических ошибок внутри маршрутов, которые приводят к большим ошибкам уравнивания при длине маршрутов больше 20-30 снимков.

Рекомендуется устанавливать значение, равное 10-30 снимкам. Маршруты большей длины при уравнивании разбиваются на части указанного размера.

- 7. Установите ползунок **Точность уравнивания** на значение, при достижении которого следует завершить итерационный процесс уравнивания.
 - Рекомендуется использовать значение 0,5 (по умолчанию). При значениях 0,5—0,55 процесс уравнивания дает оптимальное соотношение «точность-время». При значениях больше 0,5 улучшение точности незначительное, а время уравнивания сильно увеличивается вплоть до бесконечного зацикливания итерационного процесса (в этом случае используйте кнопку **Стоп** для остановки процесса). При значениях меньше 0,5 время уравнивания уменьшается за счет снижения точности. В силу сложности алгоритма оптимизации, зависимость точности и времени уравнивания от значения этого параметра является нелинейной.
- [опционально] В поле ввода Веса уравнений задайте значения весов связующих и опорных точек, а также центров проекций для уменьшения ошибок уравнивания.

Значительное изменение весов уравнений приводит к уменьшению фактической точности уравнивания. Существует некоторое оптимальное значение, при котором

точность максимальна. В большинстве случаев близким к оптимальному является значение 1. Чтобы контролировать результат подбора оптимального значения, необходимо иметь достаточное количество контрольных точек. При недостатке контрольных точек временно переведите в контрольные точки часть опорных точек (см. раздел 11).

Для записи чисел высокого/низкого порядка используется экспонента, например: «5.7е-4».

- 9. [опционально] Чтобы использовать данные измерений опорных точек при уравнивании, установите флажок **Использовать координаты опорных точек**.
- 10. [опционально] Чтобы использовать данные о центрах проекций при уравнивании, установите флажок Использовать координаты центров проекции.

7.3.4. Расчет начального приближения по схеме блока

Метод расчета начального приближения по схеме блока заключается в использовании накидного монтажа для уравнивания блока (см. руководство пользователя «Построение сети»).

Расчет начального приближения по схеме блока с уравниванием методом связок используется для уравнивания одиночного снимка.

Для вычисления начального приближения *по схеме блока* выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов Уравнивание блока. Открывается окно Параметры.
- 2. Перейдите на закладку Уравнивание.
- 3. В разделе **Метод расчета начального приближения** выберите **по схеме блока**.
- 4. Нажмите на кнопку Настройка начального приближения. Открывается окно Параметры расчета начального приближения.

😝 Параметры расчета начального приближения 🛛 📼 💻 🌉					
📝 Использовать координаты опорных точек					
📝 Использовать координаты центров проекции					
Использовать углы внешнего ориентирования					
🗷 Выполнить прямое геопозиционирование					
Недостающие данные вычисляются по текущей схеме блока и средней высоте местности проекта.					
ОК Отмена					

Рис. 12. Окно «Параметры расчета начального приближения»

- 5. Настройте параметры начального приближения по схеме блока:
 - Использовать координаты опорных точек в процессе уравнивания;
 - Использовать координаты центров проекции при наличии координат центров проекции в каталоге элементов внешнего ориентирования позволяет использовать их в процессе уравнивания;
 - Использовать углы внешнего ориентирования при наличии углов внешнего ориентирования в каталоге элементов внешнего ориентирования позволяет использовать их в процессе уравнивания;
 - Выполнить прямое геопозиционирование позволяет рассчитать координаты связующих точек по данным внешнего ориентирования. Если флажок снят, то плановые координаты связующих точек рассчитываются по рамкам снимков схемы блока, а координате Z присваивается значение средней высоты местности из данных перепада высот, заданных в свойствах проекта (подробнее см. руководство пользователя «Создание проекта»).
- Нажмите ОК. Все недостающие данные рассчитываются по рамкам снимков текущей схемы блока с учетом средней высоты местности, вычисленной по данным перепада высот местности, заданным в свойствах проекта (подробнее см. руководство пользователя «Создание проекта»).

7.3.5. Метод независимых стереопар

Метод независимых стереопар заключается в предварительном построении по стереопарам одиночных независимых моделей с последующим соединением их в единый блок и ориентирования блочной сети по опорным точкам в геодезической системе координат.

Метод независимых стереопар используется для повышения точности результатов уравнивания, полученных при расчете начального приближения, для выявления более мелких ошибок и, в случае удовлетворительных результатов, для окончательного уравнивания. Для уравнивания *методом независимых стереопар* выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов Уравнивание блока. Открывается окно Параметры.
- 2. Перейдите на закладку Уравнивание.
- 3. В разделе Метод уравнивания выберите метод независимых стереопар.
- 4. Нажмите на кнопку Настройка уравнивания. Открывается окно Параметры метода независимых стереопар.

😝 Параметры метода независимых стереопар		
Максимальное отстояние точек	Веса уравнений	
(в оазисах) Алгоритм оптимизации	связующие	1.00
 градиентный 	опорные точки	1.00
🕅 с разбиением на подблоки	центры проекции	1.00
🔘 обращение матрицы	связь - центры проекции	1.00
Точность уравнивания: 0.5		
·	Использовать координаты опорных точек	
The second se	Использовать координаты центров проекции	
ниже выше		
ОК	Отмена	

Рис. 13. Окно «Параметры метода независимых стереопар»

- 5. Задайте **Максимальное отстояние точек (в базисах)**. Параметр используется при обработке проектов наземной фотограмметрии, в которых измерены точки с большой разницей продольных параллаксов.
 - В результате применения этого параметра в каждой стереопаре автоматически исключаются из уравнивания точки, расстояние от которых до центров фотографирования превышает заданное значение расстояния в базисах. Например, если базис стереопары равен 10 м, а заданное значение максимального отстояния — 100, то будут исключены точки, которые находятся на расстоянии более 1000 м от центров фотографирования.

Рекомендуется задавать значение не более 100 базисов, так как при включении в уравнивание точек с расстоянием более 100 базисов съемки, метод независимых маршрутов (и стереопар) может не сходиться или давать результат с большими ошибками.

В случае если отсутствуют грубые ошибки в измерениях, уменьшение значения Максимальное отстояние точек (в базисах) приводит к уменьшению СКО по блоку. Слишком маленькое значение приводит к прерыванию процесса уравнивания и сообщению об ошибке из-за недостаточного количества связующих точек в тройном перекрытии.

- 6. В разделе Алгоритм оптимизации выберите один из следующих алгоритмов:
 - градиентный (по умолчанию);
- Флажок с разбиением на подблоки позволяет разбить блок изображений на подблоки в процессе уравнивания, для повышения быстродействия системы (что, при определенных обстоятельствах, может повлиять на точность уравнивания). Рекомендуется использовать данную функцию при уравнивании блоков площадной сьемки с большим количеством изображений и перекрытием порядка 80%.

обращение матрицы.

Способ обращения матрицы использовался в предыдущих версиях системы и разработан для относительно небольших блоков изображений (до 500 снимков).

- 7. Установите ползунок **Точность уравнивания** на значение, при достижении которого следует завершить итерационный процесс уравнивания.
 - Рекомендуется использовать значение 0,5 (по умолчанию). При значениях 0,5—0,55 процесс уравнивания дает оптимальное соотношение «точность-время». При значениях больше 0,5 улучшение точности незначительное, а время уравнивания сильно увеличивается вплоть до бесконечного зацикливания итерационного процесса (в этом случае используйте кнопку Стоп для остановки процесса). При значениях меньше 0,5 время уравнивания уменьшается за счет снижения точности. В силу сложности алгоритма оптимизации, зависимость точности и времени уравнивания от значения этого параметра является нелинейной.
- [опционально] В поле ввода Веса уравнений задайте значения весов связующих и опорных точек, а также центров проекций для уменьшения ошибок уравнивания.
 - Значительное изменение весов уравнений приводит к уменьшению фактической точности уравнивания. Существует некоторое оптимальное значение, при котором точность максимальна. В большинстве случаев близким к оптимальному является значение 1. Чтобы контролировать результат подбора оптимального значения, необходимо иметь достаточное количество контрольных точек. При недостатке контрольных точек временно переведите в контрольные точки часть опорных точек (см. раздел 11).

Для записи чисел высокого/низкого порядка используется экспонента, например: «5.7е-4».

9. [опционально] Чтобы использовать данные измерений опорных точек при уравнивании, установите флажок **Использовать координаты опорных точек**. 10. [опционально] Чтобы использовать данные о центрах проекций при уравнивании, установите флажок **Использовать координаты центров проекции**.

7.3.6. Метод связок

Метод связок используется для окончательного уравнивания. При использовании метода связок сеть строится и уравнивается одновременно по всем снимкам.

При уравнивании методом связок не требуется наличие тройного перекрытия снимков.

В системе предусмотрена возможность уравнивания одиночного снимка методом связок с начальным приближением по схеме блока.

Для этого необходимо наличие как минимум трех опорных точек на снимке. При этом в окнах Параметры метода связок и Параметры расчета начального приближения снимите флажок Использовать углы внешнего ориентирования, а также снимите флажок Выполнить прямое геопозиционирование в окне Параметры расчета начального приближения.

Для уравнивания снимков блока методом связок выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов **Уравнивание блока**. Открывается окно **Параметры**.
- 2. Перейдите на закладку Уравнивание.
- 3. В разделе Метод уравнивания выберите метод связок.
- 4. Нажмите на кнопку Настройка уравнивания. Открывается окно Параметры метода связок.

😞 Параметры метода свя	зок			
Точность измерений на снимках (СКО)		k (CKO)	Использовать координаты опорных точек	
ручные измерения	0.500		Использовать координаты центров проекции	
автоматические измерен	ния 0.500		Использовать углы внешнего ориентирования Минимизировать оциябки	
		🖲 пикс. 🔘 мм	 на снимках 	
Beca			🔘 в пространстве 3D	
измерения на снимках	1.00		Расстояние от центров проекции до объектов, м	
опорные точки	1.00		min: 10.0 max: 1.00e+007	
центры проекции	1.00		Точность уравнивания: 0.5	
углы внешнего ориент.	омега	1.00	· · · · · · · · · · · · · · · · · · ·	
	фи	1.00	ниже выше	
	каппа	1.00		
		ОК	Отмена	

Рис. 14. Окно «Параметры метода связок»

- 5. В разделе Точность измерений на снимках (СКО) установите точность для ручных и автоматических измерений координат точек на снимках в пикс. или мм.
 - ² Точность измерений координат точек зависит от качества фотоматериала («зерно», нерезкость, деформации снимка, неучтенные в параметрах камеры, в том числе геометрические искажения сканера), типа местности и от человеческого фактора (точности измерений оператором).
 - Если шаг сканирования снимка соответствует его качеству и опознавание точек проведено правильно, то значение точности измерений находится в пределах 0,5—1,0 размера пиксела.
- 6. В разделе **Веса** определяются веса для следующих данных:
 - веса измерений на снимках;
 - опорные точки веса координат опорных точек;
 - Введенное значение веса опорных точек эквивалентно умножению численного значения точности координат опорных точек в Каталоге опорных точек на 1/ W, где W — значение веса. Значениях веса опорных точек больше 1 усиливают привязку сети триангуляции к координатам опорных точек, значения меньше 1 ослабляют (см. руководство пользователя «Построение сети»).
 - центры проекции веса координат центров проекции. Точности координат центров проекции задаются в Каталоге элементов внешнего ориентирования (см. руководство пользователя «Построение сети»);
 - углы внешнего ориентирования (омега, фи, каппа) поле ввода веса углов внешнего ориентирования. Точности углов внешнего ориентирования задаются в Каталоге элементов внешнего ориентирования (см. руководство пользователя «Построение сети»).
- [опционально] Для использования данных об измерениях координат опорных точек в процессе уравнивания по умолчанию установлен флажок Использовать координаты опорных точек; снимите флажок, чтобы не использовать данные в процессе уравнивания.
- [опционально] Для использования координат центров проекции в процессе уравнивания по умолчанию установлен флажок Использовать координаты центров проекции; снимите флажок, чтобы не использовать данные в процессе уравнивания.
- 9. [опционально] Для использования углов внешнего ориентирования в процессе уравнивания по умолчанию установлен флажок **Использовать углы внеш-**
него ориентирования; снимите флажок, чтобы не использовать данные в процессе уравнивания.

- 10. В разделе Минимизировать ошибки выберите:
 - минимизация ошибок на снимках позволяет обеспечить более точный результат;
 - минимизация ошибок в пространстве 3D позволяет обеспечить менее точный, но более устойчивый к ошибкам результат.
- 11. В поле Расстояние от центров проекции до объектов (м) задаются параметры для отбраковки точек с грубыми ошибками — минимальное и максимальное расстояние от центров проекции до объектов в метрах.

- 12. [опционально] Для того чтобы задать условную точность уравнивания, при достижении которой следует завершать итерационный процесс уравнивания, установите ползунок **Точность уравнивания**.
- 13. Нажмите ОК для сохранения параметров.

7.3.7. Метод связок с самокалибровкой

Метод связок с самокалибровкой используется в том случае, если в проекте используется неполный набор параметров камеры (например, нет всех необходимых паспортных данных камеры) или если требуется их уточнить (см. руководство пользователя «Построение сети»).

Самокалибровка параметров камеры — это автоматическое вычисление параметров камеры (поправок к координатам главной точки и фокусного расстояния, коэффициентов дисторсии) в процессе уравнивания.

Самокалибровка параметров камеры выполняется только при уравнивании методом связок. При уравнивании другими методами заданные поправки к параметрам камеры учитываются, но не оптимизируются.

В случае, если внутреннее ориентирование выполнено некорректно из-за отсутствия некоторых данных камеры либо неверно заданных параметров камеры, самокалибровка параметров камеры на этапе уравнивания с использованием данных геопривязки (опорных точек, ЭВО) позволяет вычислить недостающую информацию.

Для самокалибровки параметров камеры рекомендуется использовать данные геопривязки (опорные точки и/или элементы внешнего ориентирования) при уравнивании блока. Также предусмотрена возможность использования самокалибровки в свободной модели, что позволяет провести анализ систематических ошибок и принять решение о целесообразности дальнейших попыток выполнения самокалибровки.

 \sum_{m}

Результаты самокалибровки зависят от набора исходных данных камеры, конфигурации блока (расположения снимков и маршрутов блока, которое зависит от схемы залета), наличия данных геопривязки (опорных точек и ЭВО) и данных измерений связующих точек. Описание всех особенностей самокалибровки выходят за рамки данного руководства (см. литературу по данной предметной области).

Для самокалибровки параметров камеры в процессе уравнивания выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов Уравнивание блока. Открывается окно Параметры.
- 2. Перейдите на закладку Уравнивание.
- 3. В разделе Самокалибровка параметров камеры установите флажок Включить самокалибровку.
- 4. Нажмите на кнопку Настройка самокалибровки. Открывается окно Самокалибровка параметров камеры.

Калибровать Название Кол-во изображений				
7	RC_waldkirh.x-cam	6		
Тип калиб	ровки			
🖲 Физичес	кая 🔘 Смешанная			
Оэффицие	нты			
		0	v +	v
Параметр	Начальное значение	Оптимизировать	Камера *	Уравнивание
Dx0	0			
Dy0	0			
DF	0			
К1	2.201647247e-009		2.201647247e-009	
K2	-3.904209404e-013		-3.904209404e-013	
КЗ	1.38193323e-017		1.38193323e-017	
P1	0		0	
P2	0		0	
	0		0	
b1	0			

Рис. 15. Окно «Самокалибровка параметров камеры»

- 5. В таблице **Камеры** установите флажок у камеры или камер, которые необходимо откалибровать.
- 6. Выберите Тип калибровки Физическая или Смешанная;
 - \sum_{m}

Для самокалибровки камер с шторно-щелевым затвором рекомендуется использовать смешанную самокалибровку.

- 7. Нажмите на кнопку 🚧, чтобы скопировать коэффициенты дисторсии из паспорта камеры.
- 8. В таблице **Коэффициенты** определите начальные значения параметров камеры в столбце **Начальное значение** и выберите параметры для оптимизации в столбце **Оптимизировать** (см. раздел 7.3.7).
- 9. Нажмите ОК для завершения настройки параметров самокалибровки камеры.
- 10. Настройте параметры уравнивания в окне Параметры.
- 11. Нажмите на кнопку Да Уравнять. После завершения процесса уравнивания оцените точность уравнивания и результаты самокалибровки камеры, которые отображаются в столбце Уравнивание окна Самокалибровка параметров камеры. При удовлетворительных результатах перейдите к следующему пункту, иначе измените начальные значения и/или набор параметров для оптимизации и повторно уравняйте блок.
- Нажмите на кнопку Сохранить для сохранения результатов уравнивания. При этом параметры построения ортофотоплана возвращаются в умолчальные значения (см. раздел «Построение ортофотоплана» в руководстве пользователя «Создание ортофотоплана»).
- 13. Выберите **Ориентирование у Управление камерами** (**Ctrl+Alt+I**). Открывается окно **Управление камерами**.
- 14. В списке Камеры в проекте выберите новую калиброванную камеру (-ы) [selfcal].x-сат и присвойте ее (их) изображениям проекта. Нажмите на кнопку Выполнить (см. руководство пользователя «Построение сети»). Нажмите ОК.
- 15. Выберите Ориентирование > Внутреннее ориентирование > Пересчитать внутреннее ориентирование.
- 16. Нажмите на кнопку 🚾 **Уравнять** панели инструментов **Уравнивание блока**. Блок уравнивается с учетом новых результатов внутреннего ориентирования.

7.3.8. Параметры самокалибровки камеры

В системе предусмотрена возможность настройки параметров самокалибровки камеры. Для этого служит окно **Самокалибровка параметров камеры**. Также оно позволяет задать начальные значения параметров и определить набор параметров для оптимизации в процессе уравнивания.

Калибровать Название Кол-во изображений				
V	RC_waldkirh.x-cam	6		
Тип калибј	оовки			
🖲 Физичес	кая 🔘 Смешанная			
(оэффицие	нты			
Папамето			Kawana *	Voapuurpauuro
параметр	О	Оптимизироватв	Камера	уравнивание
	0			
DF	0			
K1	2.201647247e-009		2.201647247e-009	
K2	-3.904209404e-013		-3.904209404e-013	
кз	1.38193323e-017		1.38193323e-017	
01	0		0	
PI	0		0	
P1 P2	•		0	
P1 P2 b1	0		0	

Рис. 16. Окно «Самокалибровка параметров камеры»

Окно Самокалибровка параметров камеры состоит из следующих элементов:

- таблица Камеры служит для выбора камер проекта, которые необходимо откалибровать;
- таблица Коэффициенты служит для определения начальных значений параметров, выбора параметров для оптимизации и анализа вычисленных в результате уравнивания значений параметров;
- панель инструментов служит для работы с данными таблицы Коэффициенты.

Раздел **Тип калибровки** позволяет выбрать метод расчета коэффициентов калибровки камеры. В большинстве случаев рекомендуется выбирать **Физический** тип калибровки.

Для самокалибровки камер с шторно-щелевым затвором рекомендуется использовать смешанную самокалибровку.

Таблица Коэффициенты состоит из следующих столбцов:

- Параметр список следующих параметров камеры:
 - Dx0 смещение от главной точки по X в мм;
 - Dy0 смещение от главной точки по Y в мм;
 - DF отклонение от значения фокусного расстояния в мм;
 - К1, К2, К3 коэффициенты радиальной дисторсии;
 - P1, P2 коэффициенты тангенциальной дисторсии;
 - b1, b2 коэффициенты деформации снимка.
- Начальное значение начальные значения параметров, которые используются в процессе уравнивания во время самокалибровки;
- Оптимизировать выбор параметров для оптимизации в процессе уравнивания с учетом начальных значений. Чтобы включить оптимизацию параметра, щелкните мышью по ячейке выбранного параметра, повторный щелчок отменяет выбор;
- Камера исходные данные камеры, заданные на этапе внутреннего ориентирования в окне Камера (см. Ориентирование > Управление камерами);

При вводе характеристик камеры на этапе внутреннего ориентирования задаются абсолютные значения координат главной точки и фокусного расстояния, поэтому в столбце **Камера** отсутствуют данные для отклонений Dx0, Dy0, DF.

Если на этапе ввода характеристик камеры задавались табличные данные дисторсии, то для этой камеры в столбце **Камера** отображаются коэффициенты дисторсии, полученные в результате аппроксимации исходных табличных данных дисторсии следующей формулой:

$$\begin{aligned} x_{corr} &= x - k_1 x r^2 - k_2 x r^4 - k_3 x r^6 - P(2x^2 + r^2) - 2 P_2 x y - b_1 x - b_2 y; \\ y_{corr} &= y - k_1 y r^2 - k_2 y r^4 - k_3 y r^6 - P(2y^2 + r^2) - 2 P_2 x y - a_1 x - a_2 y; \\ r^2 &= x^2 = y^2, \end{aligned}$$

где:

- х, у координаты точки симметрии (нулевой дисторсии) в мм;
- k1, k2, k3 коэффициенты радиальной дисторсии;
- р1, р2 коэффициенты тангенциальной дисторсии;

a1, a2, b1, b2 — коэффициенты деформации снимка.

В результате аппроксимации формулой коэффициенты дисторсии вычисляются по методу наименьших квадратов и рассчитывается средняя квадратическая ошибка аппроксимации.

• Уравнивание — результаты самокалибровки, рассчитанные в результате уравнивания значения параметров, выбранных для оптимизации.

Окно Самокалибровка параметров камеры содержит следующие кнопки для работы с данными таблицы Коэффициенты:

- 📰 позволяет выбрать для оптимизации все параметры;
- 📑 позволяет отменить оптимизацию всех параметров;
- 🕒 позволяет установить «0» для всех параметров в столбце Начальное значение;
- на позволяет скопировать значения всех параметров из столбца Камеры в столбец Начальное значение;
- • Позволяет скопировать значения всех параметров из столбца Уравнивание в столбец Начальное значение;
- • = позволяет скопировать значение параметра из выделенной ячейки в столбец Начальное значение.

По умолчанию при первой самокалибровке камер проекта используется следующий сценарий:

- все камеры проекта в таблице Камеры выбраны для самокалибровки;
- в качестве начальных значений параметров каждой камеры для самокалибровки используются исходные параметры камеры (то есть данные из столбца Камера автоматически копируются в столбец Начальное значение);

Так как при вводе характеристик камеры задаются абсолютные значения координат главной точки и фокусного расстояния, то в столбце Начальное значение для отклонений Dx0, Dy0, DF отображаются «0».

 для оптимизации в процессе уравнивания выбраны следующие параметры: DF для вычисления отклонения фокусного расстояния от исходного значения и K1, K2, K3 для расчета коэффициентов дисторсии.

epa: RC 2	0.x+cam				
1 канеры			Информац	ия о метках	
Цифровая	(Ana	логовая	Координи	ты меток:	
сазывать пар	анетры шифров	юй канеры в	Тип коорд	PHATHER METOK:	
MM .	Cox	z	Нет		
сное	153.40	10	_	1	
ояние, ни:	100.400	~	Nº	Х, ни	Y, нн
а калибровки	 □14.1 	1.2011	• <u>1</u>	105.9990	-106.0020
ная точка, м	e: X:	-0.0050	2	-106.0030	-106.0050
		0.0050	- 3	-106.0010	106.0030
Theorem 1	1.	10.0050	· ·	106.0040	106.0060
стороня направления жаса снеметр	1°х" ин (нулевой дих	торояк), нес	≤ -0×0		
стороня направлення учеса снеметр	і "х" ня (нулевой дня Х:	торони), ни: [-0.0080	×□ ×□ +0 ×0	10	В главную то
стороня направления жа оченетр R, ни	1°х" ин (нулевой дик Х: dR1, нон	торони), ни: [-0.0000 dR2, нон	 ×□ ×□ Y: 0.00 dR3, HOH 	10 dR4, HOH	В главную то
стороня направлени жа оченетр R, ни 100000	т Х ни (нулевой дик (нулевой дик Х: -0.600 -0.600	торони), нес -0.0000 dR2, нон 0.200 0.500	 ×0 ×0 Y: 0.00 dR3, нон -0.200 	10 dR4, HOH -0.100	В главную то
стороня направления Реса Сеенетр R, ни 10.0000 20.0000 20.0000	т"х" ни (нулевой дик X: dR1, ноя -0.600 -0.600 -0.400	р торони), ни: -0.0000 dR2, нон 0.200 0.500 0.200	Y: 0.00 dR3, H0H -0.200 -0.600 -0.700	10 dR4, secs -0.100 0.100	В главную то
пороня направлення ка оченетр R, ни 10.0000 20.0000 30.0000	т×° ня (нулевой дис X: dR1, ноя -0.600 -0.600 -0.600 -0.100	торони), ни: -0.0000 dR2, июн 0.200 0.500 0.500 0.300	Y: 0.00 →0 ×0 →0 ×0 →0.00 →0.00 →0.00 →0.00 →0.00	10 dR4, seon -0.100 0.100 0.300 0.400	Brnaskývo to
стороня направления Р., нен 10.0000 20.0000 30.0000 40.0000	т"х" ня (нулевой дик X: dR1, ноя -0.600 -0.600 -0.400 -0.100 -0.100	торожи), ник: [-0.0090	Y: 0.00 dR3, mox -0.200 -0.600 -0.700 -0.400 -0.100	10 -0.100 0.300 0.400 0.400	В главную то
пороня направления река снеметр R, им 20.0000 20.0000 40.0000 50.0000 50.0000	т"х" ня (нулевой дис Х: dR1, ноя -0.600 -0.600 -0.400 -0.100 -0.100 0.500	стороне), нес -0.0000 dR2, нон 0.200 0.500 0.300 0.300 1.000 1.000	Y: 0.00 →0 ×0 →10 ×0 →100	10 -0.100 0.100 0.300 0.400 0.600 0.200	В главную то
стороня направления риса снежетр 10.0000 30.0000 40.0000 50.0000 60.0000	т"х" жи (нулевой дих 20 -0.600 -0.600 -0.400 -0.100 -0.100 -0.100 0.500 0.300	тороне), не: -0.0000 0.200 0.500 0.300 0.300 1.000 0.900	Y: 0.00 →0.200 →0.200 →0.600 →0.700 →0.400 →0.100 →0.100 →0.500 0.200	10 -0.100 0.300 0.400 0.600 0.400	В главную то
стороня направления жа очентр 20.0000 20.0000 30.0000 40.0000 50.0000 50.0000 50.0000	в"×" ня (нулевой дих -0.600 -0.600 -0.400 -0.100 -0.100 -0.100 0.500 0.500 0.900	сторони), нис: -0.0000 -0.000 0.500 0.300 0.300 1.000 0.600 0.600 0.100	Y: 0.00 →0 ×0 →0.200 -0.600 -0.400 -0.100 -0.500 0.200 0.200	10 -0.100 0.100 0.300 0.400 0.600 0.700 0.400 0.500	В главную то
пороня направления раб очентр 20.0000 20.0000 30.0000 40.0000 50.0000 60.0000 80.0000 80.0000	т∑т ни (нулевой дик 20.600 -0.600 -0.600 -0.100 -0.100 0.500 0.300 0.800 0.100	торони), ни: -0.0080 dR2, июн 0.200 0.500 0.300 0.300 0.300 0.300 0.300 0.300 0.000 0.600 0.100 0.200	Y: 0.00 →0 ×0 →0.200 →0.600 →0.7000 →0.70000 →0.70000 →0.7000 →0.7000 →0.	0 -0.100 0.100 0.300 0.400 0.600 0.700 0.400 0.500 0.500	B rnaskývo to
пороня направления рака снения рака снения снения рака снения рака снения рака снения рака снения рака снения рак	а "х" (нулевой дис Х: dR1, ноя -0.600 -0.600 -0.400 -0.100 -0.100 0.500 0.300 0.800 0.100 0.100	стороне), нес -0.0000 -0.0000 0.500 0.500 0.300 1.000 0.800 0.800 0.300 0.800 0.300 0.500	Y: 0.00 →0 ×0 →10 →100 →0.600 →0.600 →0.600 →0.600 →0.700 →0.600 →0.700 →0.500 0.200 0.200 0.700 0.700	10 -0.100 0.100 0.300 0.400 0.600 0.700 0.400 0.500 0.500 0.200	В главную то

Рис. 17. Исходные табличные данные дисторсии из паспорта камеры, заданные в окне «Камера» на этапе ввода параметров камеры

Самокалибровка паранетров камеры					
Канеры					
Калиброват	гь Название	Кол-е	во изображений		
	RC 20.x-cam	6			
Коэффициен	пы				
Параметр	Начальное знач	echanic	Оптинизировать	Камера *	Уравнявание
Dx0	0				
Dy0	0				
DF	0				
K1	7.909360516e-1	1	+	.909360516e-11	
K2	1.022879247e-1	3	+	1.022879247e-13	
K3	-6.127805277e-1	18	+	6,127805277e-18	
P1	0			0	
P2	0			0	
bi	0			0	
b2	0			0	
Листорсия	камеры: 4 направ	neesta "x	*. Ошибка аппрокси	нашня дисторсин фор	wynoë: 1,6179 wor.
The LC IN					
	•00 •••• •				
	ſ		/ OK 3	Отнена	

Рис. 18. Коэффициенты дисторсии К1, К2, К3, вычисленные в результате аппроксимации формулой, и ошибка дисторсии

7.3.9. Учет систематических ошибок

При уравнивании блока предусмотрена возможность автоматического вычисления и компенсации систематических ошибок измерений бортовых элементов внешнего ориентирования.

👴 Учет с	😎 Учет систематических ошибок				
Координ	Координаты центров фотографирования (GPS)				
Вид поправок					
🔘 не ко	🔘 не компенсировать				
🔘 общ	ие на блок				
общие на маршрут					
Степень	полинома	Зависимость (для полинома 1-й степ.)			
V XY	1	от времени			
⊽ z	1	🔘 от номера снимка			
Углы внешнего ориентирования					
(конста	нтные поправки)				
не компенсировать					
🔘 общие на блок					
💿 общие на маршрут					
	ОК	Отмена			

Рис. 19. Окно «Учет систематических ошибок»

В разделе Координаты центров фотографирования (GPS) задается Вид поправок, которые применяются к координатам центров фотографирования (GPS):

- не компенсировать;
- общие на блок используется для учета систематических погрешностей в каждом блоке;
- общие на маршрут используется для учета погрешностей, которые вносит прибор GPS на маршруте (рекомендуется).

Существует возможность включения в отчет по уравниванию вычисленных значений систематической ошибки GPS.

Если съемка производилась с использованием GPS оборудования, с помощью которого определялись координаты центров проекций, то при уравнивании существует возможность вычислять поправки в эти координаты. Для этого установите соответствующий флажок в разделе **Координаты центров фотографирования (GPS)**. В основном учитываются погрешности, вносимые прибором GPS на маршруте, поэтому рекомендуется установить **общие на маршрут**.

В разделе Степень полинома флажки XY и Z позволяют определить, к каким координатам вводятся поправки, а также выбрать степень полинома.

Поправки в координаты центров проекции вычисляются по наземным опорным точкам и имеют вид:

$$\begin{split} \varDelta X &= G_0 x + G_1 x \quad N \\ \varDelta Y &= G_0 y + G_1 y \quad N, \\ \varDelta Z &= G_0 z + G_1 z \quad N \end{split}$$

где N — порядковый номер снимка в блоке или маршруте либо время в системе GPS, соответствующее моменту съемки снимка (определяется параметром Зависимость (для полинома 1-й степ.)), G — вычисляемые при уравнивании коэффициенты полинома.

При выборе полиномов первой степени используются коэффициенты G_0 , и G_1 , если же используются полиномы нулевой степени, то применяется только коэффициент G_0 , а G_1 приравниваются к нулю.

В разделе Углы внешнего ориентирования (константные поправки) задается тип поправок, применяемых к углам внешнего ориентирования снимков, если они заданы в проекте и используются при уравнивании:

- не компенсировать;
- общие на блок используется для учета систематических погрешностей в каждом блоке;
- общие на маршрут используется для учета погрешностей, которые вносит прибор GPS на маршруте (рекомендуется).

Поправки в разделе Углы внешнего ориентирования (константные поправки) используются только для *метода связок*.

Поправки имеют вид:

 $\Delta \quad \omega = A_{\alpha}$ $\Delta \quad \phi = A_{\phi} ,$ $\Delta \quad \kappa = A_{\kappa}$

где А — вычисляемые при уравнивании коэффициенты.

7.3.10. Выбор подблока

В системе предусмотрена возможность уравнивания части блока (подблок).

Для уравнивания подблока выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов **Уравнивание блока**. Открывается окно **Параметры**.
- 2. Перейдите на закладку Уравнивание.
- 3. Установите флажок Уравнивать подблок.

4. Нажмите на кнопку Выбор подблока. Открывается окно Выбор подблока.

🕏 Выбор подблока
Имя
□ 2
☑ 3_0720
☑ 3_0722
☑ 3_0724
☑ 2_0714
☑ 2_0712
☑ 2_0710
ОК Отмена

Рис. 20. Окно «Выбор подблока»

- 5. Выберите изображения, из которых состоит подблок. Для этого используйте следующие инструменты выбора изображений:
 - 📰 выбрать все изображения в списке;
 - 📑 отменить выбор всех изображений в списке;
 - 🔢 изменить выбор изображений на противоположные;
 - 💵 выбрать выделенные изображения;
 - 🗖 отменить выбор для выделенных изображений;
 - 🚟 выбрать в списке те изображения, которые выделены в схеме блока в 2D окне;
 - 🚟 выделить в схеме блока в 2D-окне те изображения, которые выбраны в списке.
- 6. Нажмите ОК.

7.4. Закладка «Отчет»

Закладка Отчет предназначена для настройки отображения результатов уравнивания в отчете, а также параметров отображения ошибок на схеме блока.

😎 Параметры	
 Параметры Система координат Уравнивание Отчет Включить в отчет Ошибки уравнивания опорные, контрольные по стереопарам межмаршр. и внутримаршр. учитывать одиночные по снимкам углы внешнего ориентирования подробно 	Допуски на ошибки
 отмечать превышение допуска включать допустимые Элементы внешнего ориентирования Каталог точек печатать ошибки Поправки GPS Поправки углов внешнего ор. 	Средний размер пикселя (GSD), м Формат печати ошибок © с фиксированной точкой © с плавающей точкой Система углов © альфа, омега, каппа
 Результаты самокалибровки Считать ошибки по связи между моделями от среднего 	 омега, фи, каппа Единицы измерения углов радианы градусы грады
ОК Ура	внять Отмена

Рис. 21. Окно «Параметры»

Закладка Отчет содержит следующие параметры:

- 1. Группа параметров **Включить в отчет** предназначена для настройки отображения в отчете результатов уравнивания:
 - Ошибки уравнивания в отчете отображаются следующие виды ошибок:
 - опорные, контрольные ошибки уравнивания на опорных и контрольных точках;
 - по стереопарам ошибки уравнивания на точках, координаты которых измерены хотя бы на одной стереопаре:
 - межмаршр. и внутримаршр. ошибки по связи, посчитанных между маршрутами и внутри маршрутов;
 - учитывать одиночные ошибки уравнивания на точках, которые не являются опорными и если их координаты измерены только на одной стереопаре.

Флажок **учитывать одиночные** рекомендуется устанавливать только в случае вычисления ошибок **от среднего** в разделе **Считать ошибки по связи**.

При уравнивании методом *независимых стереопар* или методом *независимых маршрутов* ошибки на точках, которые измерены только на одной стереопаре, равны нулю.

При уравнивании *методом связок* ошибки на точках, координаты которых измерены только на одной стереопаре, не превышают 0,1 величины поперечного параллакса на местности.

- о по снимкам ошибки уравнивания на снимках (в мм или пикселах);
- углы внешнего ориентирования ошибки на угловых элементах внешнего ориентирования, только в том случае, если эти углы заданы в проекте и использовались при уравнивании;
- подробно служит для отображения детализированной информации об ошибках (с номерами снимков, стереопар);
- **отмечать превышение допуска** служит для отображения значений ошибок уравнивания, которые превышают заданный допуск;
- включать допустимые служит для отображения всех значений ошибок уравнивания, в том числе ошибок, которые находятся в заданном допуске.
- Элементы внешнего ориентирования служит для отображения элементов внешнего ориентирования каждого снимка в отчете;
- Каталог точек служит для отображения в отчете геодезических координат всех точек, которые вычислены при уравнивании. При установленном флажке печатать ошибки в каталоге точек отображаются ошибки опорных и контрольных точек;
- Поправки GPS служит для отображения поправок GPS на центрах фотографирования;

Флажок **Поправки GPS** рекомендуется устанавливать, если центры проекции используются как опорных точек и определяется систематическая ошибка в координатах опорных точек.

• Поправки углов внешнего ор. — служит для отображения поправок в углы внешнего ориентирования;

Флажок Поправки углов внешнего ор. рекомендуется устанавливать в случае использования углов внешнего ориентирования в уравнивании и определения систематической ошибки определения углов внешнего ориентирования.

• Результаты самокалибровки — служит для отображения в отчете результатов самокалибровки параметров камеры.

Флажок **Результаты самокалибровки** рекомендуется устанавливать только при уравнивании методом связок. В этом случае рекомендуется установить флажок **Включить самокалибровку** в разделе **Самокалибровка параметров камеры**.

- Раздел Считать ошибки по связи предназначен для выбора способа вычисления ошибок по связи между стереопарами:
 - **между моделями** ошибки по связи вычисляются из разности положения одной и той же точки, посчитанной на каждой стереопаре;
 - от среднего ошибки по связи вычисляются из разности положения одной и той же точки, посчитанной на каждой стереопаре и среднего уравненного положения.
- 3. Раздел **Допуски на ошибки** позволяет задать допуски на ошибки уравнивания блока:

Допуски на ошибки уравнивания блока задаются в единицах измерения системы координат проекта.

- все одинаковые одинаковые допуски для всех видов точек. В разделе Все в поля XY и Z вводится допуск на ошибки;
- по типам точек для каждого вида точек используются разные значения допусков. В разделах Опора, Контроль, Центры проекции, Связь, Сгущения, Связь-центры проекции в поля ХҮ и Z вводятся допуски на каждый вид ошибок.
- 4. Раздел **Масштаб съемки** позволяет задать масштаб съемки, который используется при пересчете ошибок из масштаба снимка в масштаб блока и наоборот.

Значение масштаба съемки рассчитывается автоматически при уравнивании, либо задается вручную.

В поле ввода **Средний размер пикселя (GSD)** содержится средний размер пикселя на местности, который вычисляется после уравнивания.

- 5. Раздел **Формат печати ошибок** предназначен для настройки формата числовых значений ошибок в отчете:
 - с фиксированной точкой ошибки отображаются с точностью до 3 знаков после запятой;
 - с плавающей точкой ошибки отображаются с точностью до 3 значащих цифр.

- 6. Раздел Система углов предназначен для выбора системы углов внешнего ориентирования (см. приложение А):
 - альфа, омега, каппа используются в российской базе данных систем координат;
 - омега, фи, каппа используются в международной базе данных систем координат (см. приложение А).
- 7. Раздел **Единицы измерения углов** предназначен для настройки формата единиц измерения углов:
 - радианы;
 - градусы;
 - грады величина меры плоского угла, равная 1/100 величины меры прямого угла, величина полного угла равна 400 град.

8. Уравнивание сканерных блоков

8.1. Порядок работы при уравнивании сканерных блоков

Для уравнивания блока сканерных изображений необходима предварительная настройка параметров, набор которых зависит от метода обработки космических сканерных данных: строгий метод, универсальный или метод с использованием RPC-коэффициентов (подробные сведения об использовании алгоритмов обработки космических изображений см. в руководстве пользователя «Создание проекта»).

Для уравнивания блока сканерных снимков, полученных цифровым сенсором ADS 40/80/100, основные параметры уравнивания импортируются из метаданных.

Для настройки параметров точности, выбора метода и способа уравнивания, а также настройки содержания отчета результатов уравнивания служит окно **Пара**метры.

😍 Параметры	
Точки Снимки Отчет	
Гочки Снимки Отчет Система координат WGS 84 / UTM zone 36N (30deg East to 36deg East; northern hemis Выбрать С Ориентация осей: правая тройка, геод. привязка: глобальная система координат	Точность измерения точек СКО измерений на снимках 0,50000 пикс. Ошибка единицы веса геодезических координат в плане 1,00000 m по высоте 1,00000 m Использование точек У Использование точек У Использование точек Использование связующие в уравнивании Пороговое приращение координат (пикс.) 0,100000 Модель рельефа в уравнивании Не использовать У Использовать матрицу высот и Использовать постоянную высоту рельефа m Отбраковка связующих по углу засечки Включить отбраковку по углу засечки Минимальный допустимый угол засечки (градусы)
ОК	Отмена

Рис. 22. Окно «Параметры»

Панель инструментов верхней части окна **Параметры** предназначена для сохранения/загрузки параметров уравнивания и отчета и содержит следующие кнопки:

- 🕞 позволяет загрузить параметры, ранее сохраненные в ресурсах активного профиля;
- — позволяет сохранить все настройки параметров в файл *.x-ini в папке проекта ProjOption в ресурсах активного профиля;
- 🗁 позволяет загрузить настройки параметров из файла < ums проекma>.options.x-solver-s в папке файловой системы Windows;
- 🔚 позволяет сохранить настройки параметров в файл <*uмя проек- ma*>.*options.x-solver-s* в папке файловой системы *Windows*;
- 🔊 позволяет восстановить параметры по умолчанию.

Для того чтобы уравнять блок сканерных снимков, выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов Уравнивание блока. Открывается окно Параметры.
- 2. На закладке **Точки** выберите систему координат и настройте параметры точности уравнивания и использования точек.
- 3. На закладке Снимки выберите метод и определите параметры уравнивания.
- Нажмите на на кнопку Применить ко всем, чтобы использовать параметры метода для всех снимков проекта, или на кнопку Применить для применения всех настроек уравнивания к снимкам, которые выделены в таблице Изображения.
- 5. На закладке Отчет задайте значения следующих допусков:
 - на ошибки опорных, контрольных и связующих точек;
 - допуск на ошибку (СКО) объединения снимков, полученных с одного витка (если объединение осуществлялось).

Настройте параметры отображения результатов уравнивания в отчете.

- Нажмите ОК. Осуществляется проверка корректности параметров. Если значение какого-либо параметро задано некорректно, поле с неверным значением становится активным и выделяется красным цветом. Если же настройка параметров выполнена правильно, окно Параметры закрывается.
- 7. Нажмите на кнопку 🚾 панели инструментов **Уравнивание блока** для запуска процесса уравнивания.
- 8. Для просмотра и анализа результатов уравнивания в отчете нажмите на кнопку 🖹 панели инструментов **Уравнивание блока**.
- 9. При получении удовлетворительных результатов уравнивания нажмите на кнопку 🔚 панели инструментов **Уравнивание блока** для сохранения результатов. Перейдите на этап обработки проекта (построение ЦМР, векторизация, создание ортофотопланов). Если полученные результаты не удовлетворяют условиям, исправьте ошибки на этапе сбора данных для построения сети пространственной фототриангуляции (см. руководство пользователя «Построение сети») и/или измените параметры уравнивания в окне Параметры и запустите процесс уравнивания сети еще раз.

8.2. Закладка «Точки»

Закладка Точки окна Параметры позволяет выбрать систему координат и настроить параметры точности вычисления координат точек.

TOURN Comment Owner	
Точны Синакка Ортчет Система координат WGS 84 / UTM zone 36N (30deg East to 36deg East; northern hemis Bu6parts) Opreeнraция oceik: правая тройка, reod, привяжи: rлобальная система координат по высоте 1,00000 m no высоте 1,00000 m NCnonьзовать система координат Пороговое приращение координат (Использовать система координат Вилоратье очек Использовать возрици в уравнивании Не использовать постоянную высоту рельефа m Offpakoresta связующих по углу засечки Кинимальный допустимый угол засечки (градусы)	
ОК	ена

Рис. 23. Параметры уравнивания

Закладка Точки состоит из следующих разделов:

- раздел Система координат предназначен для отображения системы координат проекта. Кнопка Выбрать... позволяет изменить текущую систему координат проекта (подробные сведения о выборе системы координат см. в руководстве пользователя «Создание проекта»).
- раздел Точность измерения точек служит для определения точности пиксельных и геодезических координат точек, которые участвуют в уравнивании:
 - СКО измерений на снимках (пикс.) априорная точность измерения на снимках координат опорных и связующих точек (при условии, что последние используются при уравнивании);
 - Ошибка единицы веса геодезических координат априорная погрешность координат опорных точек, у которых вес равен 1, в плане (X,Y) и по высоте (Z).

Ошибки единицы веса плановых координат и высот задаются в тех же единицах измерения, как и те, которые используются в системе координат проекта.

 раздел Использование точек предназначен для настройки использования/исключения связующих точек в процессе уравнивания.

Пороговое приращение координат (пикс.) — минимальная разница между положениями точки в пиксельных координатах, вычисленными по ЭВО в процессе уравнивания на соседних итерациях, при достижении которой итерационный процесс прекращается.

Рекомендуется устанавливать значения в диапазоне от 0.01 до 0.2 пиксела в качестве порогового значения.

- раздел Модель рельефа в уравнивании предназначен для учета в уравнивании матрицы высот или заданной постоянной высоты рельефа:
 - Не использовать для уравнивания без матрицы высот;
 - Использовать матрицу высот позволяет использовать матрицу высот из файла (вне ресурсов активного профиля);

В системе запоминается последняя использованная матрица высот.

 Использовать постоянную высоту рельефа — позволяет вместо матрицы высот использовать постоянную высоту рельефа.

Рекомендуется при уравнивании проектов со снимками равнинной местности.

 раздел Отбраковка связующих по углу засечки позволяет исключить из уравнивания связующие точки с малым углом засечки. Для этого установите флажок Включать отбраковку по углу засечки и задайте Минимальный допустимый угол засечки в градусах;

В процессе уравнивания, точки, угол засечки которых меньше чем **Минимальный допустимый угол засечки**, будут обработаны как *связующие точки, исключенные из уравнивания* (см. раздел «Фильтр точек» руководства пользователя «Построение сети»), при этом тип точек не будет изменен на **Исключенные**.

Установите флажок Включить список связующих точек, исключенных по углу засечки в закладке Отчет для того чтобы добавить в отчет список связующих точек, исключенных по углу засечки.

8.3. Закладка «Снимки»

8.3.1. Параметры уравнивания сканерных снимков

Закладка Снимки служит для определения метода уравнивания блока сканерных снимков, а также настройки параметров уравнивания.

Параметры		
Изображения		Метол
Изображения Имя Сенсор ро_311159_pan_0000000 PanSharpened ро_311159_pan_0010000 PanSharpened	Откл. от надира Параметры Опо <u>PP</u> 0 <u>P</u> P0	Метод Строгий РРС Универсальный Импорт уравнивания Вычислительное устройство СРU Выбрать Объединения Не объединять Объединять вручную Объединения
		 Объединять автоматически Стереообработка Создавать стереопары Осоздавать стереопары из снимков маршрута Расширенные возможности задания стереопар Редактор стереопар Эпиполярное трансформирование по уравненным снимкам
		Этапы уравнивания
•	•	Поэтапное уравнивание Этапы
Поиск изображений		
имя изооражения	Вверх Вниз	
Параметры Тип модели © Параллельно-перспективная © Direct Linear Transformation © Аффинная Применить к выбранным	Применить ко всем	
ОК		Отмена

Рис. 24. Параметры уравнивания

Закладка Снимки состоит из следующих разделов:

 таблица Изображения, которая содержит все снимки проекта, их сенсор, угол отклонения от надира и параметры ориентирования каждого снимка, а так же информацию о количестве опорных точек и этапах уравнивания;

В системе предусмотрена возможность сортировки изображений по заголовкам колонок таблицы и группового выбора снимков при помощи клавиш Ctrl и Shift.

- раздел Поиск изображений;
- раздел Параметры для настройки параметров в зависимости от выбранного метода уравнивания блока снимков;

При выборе **Импорт уравнивания** параметры отсутствуют, так как все элементы внешнего ориентирования импортируются из данных ADS 40/80/100, полученных в

результате предварительной обработки и уравнивания блока снимков в программе типа ORIMA.

Параметры метода уравнивания могут быть использованы как одинаковые для всех снимков, так и выбраны для каждого снимка индивидуально. Нажмите на на кнопку **Применить ко всем**, чтобы использовать параметры метода для всех снимков проекта, или на кнопку **Применить** для применения всех настроек уравнивания к снимкам, которые выделены в таблице **Изображения**.

 раздел Метод для выбора метода уравнивания или импорта элементов внешнего ориентирования из метаданных (для снимков ADS 40/80/100);

Если в проекте достаточное или избыточное количество опорных точек, то не имеет значения, какой метод использовать, так как результаты уравнивания примерно одинаковы. Если в проекте мало опорных точек, возможно использовать сначала один метод уравнивания, а при неудовлетворительных результатах уравнивания — другой. Рекомендуемое количество точек для уравнивания сканерного блока см. в разделе 8.7.

- Строгий метод см. раздел 8.3.2;
- **RPC** метод с использованием RPC-коэффициентов см. раздел 8.3.3;
- Универсальный метод см. раздел 8.3.4;
- Импорт уравнивания импорт элементов внешнего ориентирования из метаданных для проектов ADS 40/80/100.
- раздел Вычислительное устройство позволяет выбрать устройство для выполнения уравнивания: *CPU* или *GPU*.

При наличии на рабочей станции *NVIDIA CUDA* процессора, выберите *GPU* для ускорения выполнения процесса уравнивания (см. подробную информацию на сайте http://www.nvidia.ru/object/cuda_gpus_ru.html).

В случае, если в качестве расчетного устройства выбрано *GPU*, но его не удалось инициализировать или оно не имеет достаточной вычислительной способности, для расчета автоматически используется *CPU*.

 раздел Объединения, для выбора способа объединения снимков, полученных с одного витка:

Наличие объединенных снимков в уравнивании блока позволяет использовать меньшее количество опорных точек на блок (см. рекомендации в разделе 8.7).

- Не объединять объединение снимков не производится;
- Объединять вручную объединение снимков, полученных с одного витка, вручную. Каждое объединение в процессе уравнивания обрабатывается как один снимок.

• **Объединять автоматически** — снимки автоматически объединяются по связующим точкам, некорректные связи автоматически отбраковываются.

Чтобы получить информацию по отбракованным связям в отчете, на закладке Отчет в разделе Объединения выберите Подробный отчет.

- раздел Этапы уравнивания для реализации поэтапного уравнивания последовательного уравнивания выделенных подблоков сканерных космических снимков.
- раздел Стереообработка для выбора способа создания стереопар:
 - Создавать стереопары из снимков маршрута стереопары создаются из каждых двух соседних снимков маршрута;

Используется только для стереоблоков.

• Расширенные возможности создания стереопар — позволяет сформировать стереопары из изображений блока вручную.

Для вычисления эпиполярных изображений (при создании стереопар) по связующим точкам снимите флажок Эпиполярное трансформирование по уравненным снимкам. Иначе происходит вычисление эпиполярных изображений непосредственно по результатам уравнивания.

Рекомендуется установить флажок Эпиполярное трансформирование по уравненным снимкам для получения корректных моделей на стереопарах со сложной геометрией (при асинхронной стереосъемке).

8.3.2. Строгий метод уравнивания

При уравнивании *строгим* методом учитываются элементы внешнего ориентирования из метаданных, полученных от поставщика продукта ДЗЗ.

😎 Параметры	
Изображения	Метод
	© Строгий
имя Сенсор Откл. от надира Параметры Опо	© RPC
po_311159_pan_000000 PanSharpened PP 0	Универсальный
	О Импорт уравнивания
	Вычислительное устройство
	СРИ 🔻 Выбрать
	Объединения
	 Не объединять
	Объединять вручную
	Осъединять автоматически
	 Создавать стереопары из снимков маршрута
	О Расширенные возможности задания стереопар
	Редактор стереопар
	 Этиполярное трансформирование по уравненным снимкам Этапы уравнивания
۲ III ا	Поэтапное уравнивание
Поиск изображений	Зтапы
Имя изображения Направление поиска по списку	
Вверх Вниз	
Параметры	
ип модели	
© Direct Linear Transformation	
🔿 Аффинная	
Применить к выбранным	
ОК	Отмена

Рис. 25. Параметры строгого метода уравнивания

Для строгого метода предусмотрено два способа уравнивания:

Независимое ориентирование — позволяет уравнять снимки блока по отдельности (с внесением полиномиальных поправок), то есть уравнивание каждого снимка производится с учетом только измеренных на снимке координат опорных точек, без использования связей с другими снимками блока;

Независимое ориентирование применяется для получения начального приближения для уравнивания блока либо используется как основная процедура ориентирования отдельного снимка (если этот снимок исключен из блочного уравнивания).

При установке флажка Раздельное уточнение траектории и ориентации поправки в линейные и угловые элементы внешнего ориентирования вносятся поочередно.

• Ориентирование в блоке (по умолчанию) — позволяет уравнять весь блок снимков с использованием как опорных, так и связующих точек с внесением

полиномиальных поправок (если на закладке **Точки** установлен флажок **Исполь**зовать связующие в уравнивании).

Для корректного уравнивания *строгим* методом рекомендуется использовать настройки по умолчанию.

В процессе уравнивания вносятся поправки к линейным и угловым элементам внешнего ориентирования, полученным из метаданных снимков. Поправки представляют собой полиномы, степени которых вычисляются системой автоматически либо задаются пользователем вручную. Поправки устанавливаются в зависимости от типа элементов внешнего ориентирования:

- для линейных ЭВО поправка в перемещение: **вдоль трассы**, **поперек трассы**, **радиальная**;
- для угловых ЭВО ориентация сенсора: крен, рысканье, тангаж.

Рекомендуется сначала использовать автоматическое внесение поправок, а затем по результатам уравнивания (при анализе результатов в отчете или векторов ошибок) принять решение об установке значений поправок для тех или иных ЭВО вручную. Для установки поправок вручную в разделе Степени полиномов поправок выберите Устанавливаются пользователем, задайте степень полинома.

Вид поправки	Направление вектора ошибки
Вдоль трассы/тангаж	
Поперек трассы/крен	
Радиальная	+ + + + + + + + + + + + + + + + + + +
Рыскание	x x x x X X X

Таблица 2. Трактовка векторов ошибок, вызванных неточностью ЭВО

8.3.3. Метод с использованием RPC-коэффициентов

При выборе метода **RPC** используются RPC-коэффициенты из метаданных, полученных от поставщика продукта Д33.

Параметры					
Гочки Снимки Отчет					
Изображения					Метод
Имя	Сенсор	Откл. от надира	Параметры	*	◎ Строгий
E 5 123-254 06_09_27 08_14_40 1 T	SPOT5/HRG1	0.970624	RPC+auto		RPC
E 5 125-254 06_09_16 08_26_09 1 T	SPOT5/HRG1	19.256169	RPC+auto		🗇 Универсальный
E 5 123-255 06_09_27 08_14_48 1 T	SPOT5/HRG1	0.970858	RPC+auto		О Импорт уравнивания
E 5 125-255 06_09_16 08_26_17 1 T	SPOT5/HRG1	19.255461	RPC+auto		
E 5 126-255 06_09_01 08_14_39 2 T	SPOT5/HRG2	7.603602	RPC+auto		вычислительное устроиство
E 5 125-256 06_09_16 08_26_25 1 T	SPOT5/HRG1	19.254808	RPC+auto		СРИ 🔻 Выбрать
E 5 126-256 06_09_01 08_14_47 2 T	SPOT5/HRG2	7.602837	RPC+auto		
					Объединения
					• Не объединять
					 Объединять вручную Объединения
					Объединять автоматически
					Стереообработка
				-	🔽 Создавать стереопары
•	III		4		
Параметры					Создавать стереопары из спимков маршрута
Поправка					Задавать стереопары вручную
• Автовыбор					Редактор стереопар
Сдвиг					Эпиполярное трансформирование по уравненным снимкам
🔘 Аффинная					Этапы уравнивания
🔘 Нет					
Априорные ошибки парамет	ров				Этапы
Савиг (пиксели) 10					
TO TO					
Уход (р.р.т.) 50					
Применить к выбранным		Прим	иенить ко всем		
OK					0
UK					Отмена

Рис. 26. Параметры уравнивания снимков с использованием RPC-коэффициентов

Раздел **Поправка** позволяет выбрать один из следующих видов поправок, которые вносятся в RPC-коэффициенты в процессе уравнивания:

- Автовыбор вид поправки определяется автоматически по количеству опорных и связующих точек;
- Сдвиг вводится константная поправка в RPC-коэффициенты;
- Аффинная вычисляется аффинная поправка к RPC-коэффициентам;
- Нет поправки в исходные RPC-коэффициенты не вносятся.

Используется, например, для проверки корректности опорных точек или системы координат проекта.

Параметры раздела **Априорные ошибки параметров** позволяют определить точность исходных RPC-коэффициентов и точность задания системы координат (например, в случае аппроксимации местной системы координат с неизвестными параметрами с помощью топоцентрической горизонтальной системы координат).

Раздел Априорные ошибки параметров содержит следующие параметры:

- Сдвиг (пиксели) априорная средняя квадратическая ошибка свободных членов вводимой поправки (в пикселах);
- Уход (p.p.m.) априорная средняя квадратическая ошибка линейных коэффициентов вводимой поправки (безразмерный коэффициент, вводится в миллионных долях: p.p.m. — parts per million).

В системе предусмотрена возможность использования матрицы высот при уравнивании RPC-методом для увеличения точности уравнивания. Существуют следующие рекомендации по использованию матрицы высот в уравнивании:

- Рекомендуется использовать матрицу высот в проектах с относительно гладким рельефом, то есть с плавным перепадом высот. Иначе при наличии в области связующей точки резкого перепада высот, либо наличии артефакта на матрице результаты могут быть некорректными.
- 2. При наличии большого числа точек триангуляции не рекомендуется использовать матрицу высот из-за значительного замедления процесса уравнивания.
- 3. Для стабильной работы значение **Сдвиг** в разделе **Априорные ошибки па**раметров рекомендуется уменьшать относительно значения по умолчанию.

Оптимальное значение подбирается экспериментально и может быть как 1, так и вплоть до 0.01.

8.3.4. Универсальный метод уравнивания

Универсальный метод — метод уравнивания с использованием аффинной, параллельно-перспективной модели или алгоритма Direct Linear Transformation (DLT).

Универсальный метод позволяет обрабатывать любые сканерные изображения.

При использовании универсального метода требуется большее число опорных точек на стереопару по сравнению со *строгим* алгоритмом (минимум 4 опорных точки; рекомендуется 10 опорных точек, см. раздел 8.7).

Для обработки ортофотопланов (например, снимков, полученных SPOT-5 с уровнем обработки 2А, подробную информацию смотри в описаниях спутниковой системы) используется **только** универсальный метод уравнивания.

Параметры				
😒 😫 🥏				
Точки Снимки Отчет				
Изображения				Метод
Имя	Сенсор	Откл. от надира	Параметры	. 🔘 Строгий
E 5 123-254 06 09 27 08 14 40 1 T	SPOT5/HRG1	0.970624	PP	© RPC
E 5 125-254 06 09 16 08 26 09 1 T	SPOT5/HRG1	19.256169	PP	Универсальный
E 5 123-255 06_09_27 08_14_48 1 T	SPOT5/HRG1	0.970858	PP	
E 5 125-255 06_09_16 08_26_17 1 T	SPOT5/HRG1	19.255461	PP	О импорт уравнивания
E 5 126-255 06_09_01 08_14_39 2 T	SPOT5/HRG2	7.603602	PP	Вычислительное устройство
E 5 125-256 06_09_16 08_26_25 1 T	SPOT5/HRG1	19.254808	PP	СРИ 🔻 Выбрать
E 5 126-256 06_09_01 08_14_47 2 T	SPOT5/HRG2	7.602837	PP	
				Объединения
				• Не объединять
				Объединять вручную Объединения
				🔘 Объединять автоматически
				Стереообработка
				Создавать стереопары
				Создавать стереопары из снимков маршрута
				Задавать стереопары вручную
				Редактор стереопар
				Эпиполярное трансформирование по уравненным снимкам
•			4	
Параметры				
Тип модели				Поэтапное уравнивание Этапы
• параллельно-перспективн	ая			
Direct Linear Transformation				
🔘 Аффинная				
Применить к выбранным		Прим	иенить ко всем	
ОК				Отмена

Рис. 27. Параметры универсального метода уравнивания снимков

Раздел Тип модели служит для выбора типа модели. Модель выбирается в зависимости от количества используемых опорных точек:

- Параллельно-перспективная не менее 7 опорных точек;
- Direct Linear Transformation (DLT) не менее 6 опорных точек;
- Аффинная не менее 4 опорных точек.

Увеличение числа опорных точек повышает достоверность результатов уравнивания, однако по возможности рекомендуется использование **Строгого** или **RPC**-метода, точность которых выше по сравнению с результатами уравнивания универсальным методом.

8.3.5. Формирование стереопар вручную

В системе предусмотрена возможность формирования стереопары из изображений блока вручную в процессе уравнивания блока снимков.

Формирование стереопар осуществляется в окне **Создание стереопар**. Стереопары создаются автоматически из соседних снимков каждого маршрута, а также существует возможность дополнительно создавать стереопары, образованные несоседними маршрутными снимками блока и добавлять межмаршрутные стереопары. Ручное формирование стереопар позволяет выполнить построение эпиполяров для выбранных изображений.

Для того чтобы открыть окно Создание стереопар выполните следующее:

- 1. Нажмите на кнопку 🔛 панели инструментов **Уравнивание блока**. Открывается окно **Параметры**;
- 2. Выберите закладку Снимки;
- 3. В разделе Стереообработка установите флажок Создавать стереопары. Выберите параметр Расширенные возможности создания стереопар;
- 4. Нажмите на кнопку Редактор стереопар.... Открывается окно Создание стереопар.

Формирование стереопар вручную применяется в тех случаях, когда требуется сформировать стереопару из снимков с углом засечки в диапазоне от 25 до 40 градусов.

Изображения проекта				Стереопары выбранного изображения	1
Имя в проекте	Дата и время съемки	Маршрут	Стереопар	Имя первого изображения	Имя второго изображения
SCENE 5 123-254 06 09 27 08 14 40 1 T	27/09/2006 08:14:40.000	1	0	SCENE 5 125-254 06 09 16 08 26 09 1 T	SCENE 5 125-255 06 09 16 08 26 17
SCENE 5 125-254 06 09 16 08 26 09 1 T	16/09/2006 08:26:09.000	2	1		
SCENE 5 123-255 06 09 27 08 14 48 1 T	27/09/2006 08:14:48.000	1	0		
SCENE 5 125-255 06_09_16 08_26_17 1 T	16/09/2006 08:26:17.000	2	1		
SCENE 5 126-255 06_09_01 08_14_39 2 T	01/09/2006 08:14:39.000	3	0		
SCENE 5 125-256 06 09 16 08 26 25 1 T	16/09/2006 08:26:25.000	2	0		
SCENE 5 126-256 06_09_01 08_14_47 2 T	01/09/2006 08:14:47.000	3	0		
				<	4
4			4	Список стереопар	удалить выоранные стереопары
Добавить снимок 1 С	тереопара	Добавити	ь снимок 2	Имя первого изображения SCENE 5 125-254 06_09_16 08_26_09 1 T	Имя второго изображения SCENE 5 125-255 06_09_16 08_26_17
Снимок 1	Ct	имок 2			
Имя в проекте:	Имя в проекте:				
SCENE 5 125-255 06_09_16 08_26_17 1 T	SCENE 5 126-255 0	6_09_01 08_	14_39 2 T		
Маршрут:	Маршрут:			•	4
2	3			Создать по маршрутам	Удалить выбранные
Создать			Очистить	Создать по перекрытиям	Удалить все
ок					Отмена

Рис. 28. Окно «Создание стереопар»

Окно Создание стереопар содержит следующие разделы:

- Изображения проекта таблица всех изображений блока с указанием даты и времени съемки, номера маршрута и количества стереопар, в которых используется изображение;
- Стереопара позволяет выбрать два снимка из таблицы Изображения проекта для формирования из них стереопары;
- Стереопары выбранного изображения таблица со всеми стереопарами, в которых используется изображение, выдлеленное в таблице Изображение проекта;
- Список стереопар список всех сформированных стереопар.

Кнопки **Удалить выбранные** и **Удалить все**, которые расположены под таблицами **Стереопары выбранного изображения** и **Список стереопар**, служат для редактирования списка созданных стереопар.

Реализованы следующие способы создания стереопар:

- Создать по маршрутам стереопары формируются автоматически из соседних снимков каждого маршрута;
- Создать по перекрытиям стереопары формируются по заданным параметрам перекрытий снимков в маршруте;
- Вручную.

Для формирования стереопар по маршрутам нажмите на кнопку **Создать по маршрутам**. Выполняется автоматическое формирование стереопар.

Для формирования стереопар по параметрам перекрытий снимков в маршруте выполните следующие действия:

1. Нажмите на кнопку Создать по перекрытиям. Открывается окно Поиск стереопар по перекрытиям.

😎 Поиск стереопар по перекрытиям	
Параметры поиска	
Обязательно наличие точек, измеренных на обоих снимках	
Процент площади перекрытия: Не менее: 10.0 📩 % При невозможности вычислить:	Отклонить 🔻
🔲 Число пикселей в перекрытии: Не менее: 1.0 👘 млн При невозможности вычислить:	Отклонить 🔻
🗐 Угол засечки (конвергенции): От 10.0 👘 до 90.0 👘 ° При невозможности вычислить:	Отклонить 🔻
Оба снимка должны быть получены одним и тем же ИСЗ/сенсором	Отклонить 🔻
🗇 Интервал съемки: Не более: 0.1 сут. При невозможности вычислить:	Отклонить 🔻
🗌 Разность дат съемки (не учитывая годы): Не более: 30 👘 дней При невозможности вычислить:	Отклонить 🔻
Различие пространственного разрешения не более: 20.0 3 Клиние пространственного разрешения не более: 20.0 Клиние пространств Клиние пространственного разрешения не более: 20.0 Клиние пространственного разрешения не более: 20.0 Клиние пространственного разрешения не более: 20.0 Клиние пространственное на странственного разрешения не более: 20.0 Клиние простр	Отклонить 🔻
Различие азимута Солнца не более: 15.0 • При невозможности вычислить:	Отклонить 🔻
Различие высоты Солнца над горизонтом не более: 15.0 • При невозможности вычислить:	Отклонить 👻
Поиск стереопар Сб	рос параметров
Найденные стереопары	
Снимок 1 Снимок 2 Число точек % перекрытия Пикселей перекрытия (млн.) Угол засечки Спутник/сенсор Ин	тервал съемки («
<	•
Удалить выбранные	Удалить все
OK	Отмена

Рис. 29. Параметры поиска стереопар по перекрытиям

- 2. Выберите параметры поиска стереопар в зависимости от задач:
 - для проверки корректности формирования стереопары из разновременных снимков либо снимков, полученных с разных сенсоров, установите флажок Обязательно наличие точек, измеренных на обоих снимках;
 - если стереопары формируются для построения ЦМР, установите флажок Процент площади перекрытия и задайте значение перекрытия в поле Не менее в процентах и/или установите флажок Угол засечки (конвергенции) и задайте диапазон значений угла от..до в градусах;
 - чтобы ограничить поиск стереопар по количеству пикселов, попадающих в перекрытие снимков, установите флажок Число пикселей в перекрытии и задайте значение Не менее миллионов пикселов;
 - для формирования стереопар только из снимков, полученных одинаковыми сенсорами, установите флажок Оба снимка должны быть получены одним и тем же ИСЗ/сенсором;

- для поиска снимков с ограничением по разнице в дате съемки установите флажок Интервал съемки и задайте количество Не более...сут;
- чтобы ограничить поиск стереопар по значению пространственного разрешения, установите флажок **Различие пространственного разрешения не более** и задайте в поле значение в процентах.
- Для всех параметров **При невозможности вычислить/определить** наличие стереопар с заданным параметром предусмотрено два варианта действий. Выберите **Отклонить**, чтобы игнорировать стереопары с несовпадением параметров, или **Принять** для создания стереопар в любом случае. Для того чтобы сбросить все параметры нажмите на кнопку **Сброс параметров**.
- 3. Нажмите на кнопку **Поиск стереопар**. В разделе **Найденные стереопары** в таблице отображаются все найденные стереопары, которые удовлетворяют заданным условиям, а также параметры этих стереопар.

Кнопки **Удалить выбранные** и **Удалить все** служат для редактирования списка создаваемых стереопар.

4. Нажмите на кнопку ОК для возврата к окну Создание стереопар. Стереопары из раздела Найденные стереопары добавляются в раздел Список стереопар. пар.

Для формирования стереопар вручную выполните следующие действия:

- 1. Выберите левый снимок из таблицы Изображения проекта. В разделе Стереопара нажмите на кнопку Добавить снимок 1.
- 2. Выберите правый снимок из таблицы **Изображения проекта**. В разделе **Стереопара** нажмите на кнопку **Добавить снимок 2**.
- 3. Нажмите на кнопку **Создать** для подтверждения и добавления стереопары в таблицу **Список стереопар**. Иначе нажмите на кнопку **Очистить**;
- 4. [опционально] Повторите эти действия для создания большего количества стереопар.

Кнопка ОК в окне **Создание стереопар** позволяет создать стереопары для их дальнейшего использования в процедуре уравнивания. Иначе — нажмите на кнопку **Отмена**.

8.3.6. Объединение снимков, полученных с одного витка

Возможность объединения снимков, полученных с одного витка, позволяет использовать меньшее количество опорных точек при уравнивании сканерного блока. На *каждое объединение* достаточно использовать 4 опорных точки.

В системе предусмотрена возможность автоматического объединения снимков (по типу сенсора, времени съемки и угла отклонения от надира), а также возможность выбора снимков и объединения их вручную.

Для автоматического объединения снимков выберите **Объединять автоматиче**ски. Происходит выбор снимков, полученных одним и тем же сенсором, имеющих одинаковое время съемки и угол отклонения от надира.

Чтобы создать объединения из снимков, полученных с одного витка, вручную, выполните следующие действия:

- 1. Проанализируйте снимки на возможность объединения: сравните снимки по времени съемки (разброс времени не больше 1 минуты) и проверьте стыковку в перекрытиях в модуле «Измерение точек».
- 2. Измерьте координаты связующих точек в перекрытиях для сшивки снимков. Для корректного объединения снимков рекомендуется измерение координат не менее 2-3 точек в каждом перекрытии.

Связующие точки, которые используются для объединения снимков, не участвуют в уравнивании блока.

- 3. Нажмите на кнопку 🔛 панели инструментов **Уравнивание блока**. Открывается окно **Параметры**.
- На закладке Снимки в разделе Объединения выберите Объединять вручную и нажмите на кнопку Объединения. Открывается окно Редактор объединений.

бъединения				Снимки проекта			
Число снимков	Min. дата	Мах. дата	Длительность	Имя	Дата съемки	Объединение	Маршрут
2	27/09/2006 08:14:40.00	0 27/09/2006 08:14:48.000	8.0	123-254 06_09_27 08_14_40	T 27/09/2006 08:14:40.	000 1	1
			16.0	125-254 06_09_16 08_26_09	T 16/09/2006 08:26:09.	000 2	2
				123-255 06_09_27 08_14_48	T 27/09/2006 08:14:48.	000 1	1
•			- F	•			
Созд	ать Переименс	овать Удалить	Удалить все	Создать объединения:	по маршрутам из проек	по метаданн	ным
Созд нимки объединен И	ать Переименс ия мя	овать Удалить Дата съемки	Удалить все	Создать объединения:	по маршрутам из проен	по метаданн	ным
Созд нимки объединен И СЕNE 5 125-254 06	ать Переименс ия ия 09 16 08 26 09 1 Т 10	овать Удалить Дата съемки 5/09/2006 08:26:09.000	Удалить все	Создать объединения:	по маршрутам из проен	та по метаданн Дата съемки	ным
Созд нимки объединен И СЕПЕ 5 125-254 06, СЕПЕ 5 125-255 06	ать Переименс ия 	овать Удалить Дата съемки 5/09/2006 08:26:09.000 5/09/2006 08:26:17.000	Удалить все	Создать объединения: Неприсоединенные сни SCENE 5 126-255 06.09 SCENE 5 126-255 06.00	по маршрутам из проен мки 11 08_14_39 2 T 01/09/20 11 08_14_47 2 T 01/09/20	та по метаданн Дата съемки 06 08:14:39.000 06 08:14:47.000	њм
Созд нимки объединен И СЕПЕ 5 125-254 06, СЕПЕ 5 125-255 06, СЕПЕ 5 125-256 06,	ать Переимено ия 	ОБАТЬ Удалить Дата съемки 6/09/2006 08:26:09.000 5/09/2006 08:26:17.000 5/09/2006 08:26:25.000	Удалить все	Создать объединения: Неприсоединенные сни ВСЕМЕ 5 126-255 06_09_0 SCENE 5 126-256 06_09_0	по маршрутам из проен мки 11 08_14_39 2 T 01/09/20 11 08_14_47 2 T 01/09/20	та по метаданн Дата съемки 06 08:14:39.000 06 08:14:47.000	њ
Созд нимки объединен И. СЕNE 5 125-254 06, СЕNE 5 125-255 06, СЕNE 5 125-256 06,	ать Переимено ия 09_16 08_26_091 Т 11 09_16 08_26_171 Т 14 09_16 08_26_251 Т 16	ОБАТЬ Удалить Дата съемки 6/09/2006 08:26:09.000 6/09/2006 08:26:17.000 5/09/2006 08:26:25.000	Удалить все	Создать объединения: Неприсоединенные сни ВСЕКЕ 5 126-255 06.09_ SCENE 5 126-256 06.09_ «	по маршрутам из проен мки 11 08_14_39 2 T 01/09/20 11 08_14_47 2 T 01/09/20	та по метаданн Дата съемки 06 08:14:39.000 06 08:14:47.000	њ

Рис. 30. Окно «Редактор объединений»

5. [опционально] При возможности объединить снимки из каждого маршрута, нажмите на кнопку по маршрутам из проекта. Для объединения снимков по метаданным нажмите на кнопку по метаданным.

Для использования объединений по маршрутам необходимо перед этим в редакторе блока разбить снимки на маршруты по виткам.

- 6. Для создания объединения вручную задайте имя объединения в поле ввода, которое расположено под таблицей **Объединения** и нажмите на кнопку **Создать**.
- 7. Чтобы определить список снимков, участвующих в объединении, выберите снимки в таблице **Неприсоединенные снимки** и нажмите на кнопку **—**. Выбранные снимки отображаются в таблице **Снимки объединения**.

В таблице **Объединения** отображается статистика по объединению: количество выбранных снимков для сшивки и разброс по времени съемки этих снимков (минимальное и максимальное время, длительность в секундах).

- Заметный разброс времени съемки (больше *одной* минуты) ставит под сомнение возможность объединения снимков. В этом случае рекомендуется провести дополнительное исследование областей перекрытий снимков в модуле **Измерение точек** (см. руководство пользователя «Построение сети»).
- 8. Нажмите ОК для возврата на закладку Снимки окна Параметры. В таблице Изображения отображаются объединенные снимки.
- 9. На закладке **Отчет** в разделе **Объединения** настройте параметры отображения результатов объединения в отчете и допуск на сшивку объединения.

Рекомендуется установить значение СКО не более 1 пиксела. Для снимков, полученных с одного витка, допуск на сшивку объединения устанавливается в пределах 0.01 пиксела.

- 10. Нажмите на кнопку 🚾 панели инструментов Уравнивание блока.
- 11. Нажмите на кнопку **Отчет** для просмотра результатов объединения в разделах **Объединение** и проанализируйте значения ошибок на предмет превышения допуска, установленного на закладке **Отчет** окна **Параметры**.

Связующие точки, которые использовались для объединения снимков, не участвуют в уравнивании блока.

ह Отчет				
A 🚵 🚧 🐂 🖻 🛎				
				
по связующим точкам				
максимальная ошибка по х (пиксели	1			
максимальная ошибка по у (пиксели	1			_
максимальное смещение в плане (м)	0.5			
Объединение: вторая группа				
Число снимков: 5				
Снимок	Привязка к снимку	CKO (maarc.)	Число точек	Геометрия
po_595685_bgrn_0000000				
po_595685_bgrn_0000001	po_595685_bgrn_0000000	0.0	3	OK
po_595685_bgrn_0000002	po_595685_bgrn_0000001	0.0	4	OK
po_595685_bgrn_0000003	po_595685_bgrn_0000002	0.0	4	OK
po_595685_bgrn_0000004	po_595685_bgrn_0000003	0.0	4	OK
Объединение: первая группа				
Число снимков: 7				
Снимок	Привязка к снимку	CKO (maarc.)	Число точек	Геометрия
po_595687_bgrn_0000001				
po_595687_bgrn_0000002	po_595687_bgrn_0000001	0.0	5	OK
po_595687_bgrn_0000003	po_595687_bgrn_0000002	0.0	6	OK
po_595687_bgrn_0000000	po_595687_bgrn_0000001	0.0	3	OK
po 595687 bgrn 0000004	po 595687 bgrn 0000003	0.0	5	OK
po_595687_bgrn_0000005	po_595687_bgrn_0000004	0.0	5	OK
po 595687 bgrn 0000006	po 595687 bgrn 0000005	0.0	3	OK
Снимок: po_595685_bgrn_0000000				•

🕏 Отчет					
A 🛐 🛤 🖺 🖧 📇					
максимальное смешен	ние в плане (м) О	. 5		▲
Объединение: втор	рая группа				
Число снимков: 5					
Снимок: ро	o_595685_bgrn	_0000000			
Снимок: ро	o_595685_bgrn	_0000001			
Привязка к снимку:	 po 595685 b	- arn 0000000			
	dx Пиксели	dy Пиксели	ds Пиксели	Геометрия	
*8	0.0	0.0	0.0	0 K	
*15	0.0	0.0	0.0	OK	
*16	0.0	0.0	0.0	0 K	
CKO:	0.0	0.0	0.0		
Средний модуль:	0.0	0.0	0.0		
MAX:	0.0	0.0	0.0		
KOJBNYECTBO TOYEK:	3				
Снимок: ро	o_595685_bgrn	_0000002			
Привязка к снимку:	po_595685_b	grn_0000001			
	dx	dy	ds	Геометрия	
	Пиксели	Пиксели	Пиксели		
*17	0.0	0.0	0.0	OK	
*18	0.0	0.0	0.0	OK	
*19	0.0	0.0	0.0	OK	
*20	0.0	0.0	0.0	OK	
CKO:	0.0	0.0	0.0		
Средний модуль:	0.0	0.0	0.0		
MAX:	0.0	0.0	0.0		
KOJNYECTBO TOYEK:	4				-
7					

Рис. 32. Подробный отчет по объединениям

Если невозможно создать объединение снимков, СКО значительно превышает значение допуска и в отчете выдается сообщение об ошибке в процессе объединения снимков.

🔁 Отчет				X
A 🚱 🛤 📴 📴 🖴 🖴				
Блок: GeoBye Hobart Test копия				•
Дата создания отчета: 10.11.2013 14:05:55				
настроики отчета:				
Исключать презышение допуска.	да Чел			
Ошибки на связующих точках:	от уравненного	положения		
Допуски:				
по опорным точкам				
максимальная ошибка по х (пиксели)	1			
максимальное смежение в плане (h)	2			
maneral care care of the second	-			
по контрольным точкам				
максимальная ошибка по х (пиксели)	1			_
максимальная ошибка по у (пиксели)	1			
максимальное смещение в плане (m)	2			
по связующим точкам по у (писсепи)	1			
максимальная ошибка по у (пиксели)	1			
максимальное смещение в плане (m)	2			
Объединение: 1				
Число снимков: 2				
Снимок	Привязка к снимку	CKO (marc.)	Число точек Геометрия	
po_311159_bgrn_0000000				
po_311159_bgrn_0010000	po_311159_bgrn_000	00000 106.1*	10 Omr6ra	
Снямок: ро 311159 bgrn 0000000				
Расхождения на опорных точках				
dx	dy dS			
Пиксели Пи	всели в			
B1_10 6.239* 2	2.045* 46.176*			
B2_01 1.147*	3.375* 7.185*			
B3_09 -1.542" -	A 199* 0 297*			
B4_02 1_478*	4.133* 0.037*			
B5 03 -1 461* -	5.722* 11.901*			
B6 07 -3.329* -1	1.888* 24.881*			
B7 10 -0.109	0.638 1.298			
B8_04_A -2.559* -	9.786* 20.386*			
CK0: 2.699*	9.646* 20.188*			
Средний модуль: 2.096*	7.537* 15.770*			-

Рис. 33. Отчет с ошибкой в процессе объединения

8.4. Закладка «Отчет»

Закладка Отчет окна Параметры позволяет настроить содержимое отчета уравнивания, а также задать допуски на ошибки уравнивания блока.

🕫 Параметры					
Точки Снимки Отчет					
Ошибка на связующих точках	Допуски на ошибки				
• Отклонение от уравненного положения	Опорные точки				
Расхождение между стереопарами	Положение на снимк	e	Положе	ние на местности	
Включать в отчет	x 1.000000	пикс.	dS(X,Y)	0.500000	m
🖉 Отчет по изображениям	y 1.000000	пикс.	z	0.500000	m
🔲 Отчет по стереопарам					
🖉 Отчет по блоку	Sxy 0.500000	m			
Допуски	Контрольные точки				
Отмечать превышение допуска	Положение на снимк	e	Положе	ние на местности	
П Не печатать допустимые	× 1.000000	пикс.	dS(X,Y)	0.500000	m
Каталог точек	У 1.000000	пикс.	z	0.500000	m
Каталог точек	Sxy 0 500000	m			
🔲 Печатать ошибки	0.500000				
Дополнительно	Связующие точки				
Включать элементы ориентирования	Положение на снимк	e	Положе	ние на местности	
🔲 Включить список связующих точек, исключенных по углу засечки	x 1.000000	пикс.	dS(X,Y)	0.500000	m
Объединения	y 1.000000	пикс.	z	0.500000	m
🔘 Подробный отчет	Svv 0.500000	m			
 Краткий отчет 	5,19 01500000				
Не включать в отчет					
Отмечать превышение допуска					
Допуск на сшивку объединения 1.000000 пикс.					
Этапы уравнивания					
🔘 Подробный отчет					
Краткий отчет					
Не включать в отчет					
Сортировка					
По имени точки					
ОК					Отмена

Рис. 34. Параметры на закладке «Отчет»

Закладка Отчет содержит следующие разделы:

- раздел Ошибки на связующих точках предназначен для выбора метода вычисления ошибок для связующих точек:
 - Отклонение от уравненного положения ошибки вычисляются по максимальному отклонению от среднего значения координаты, рассчитанного для всех моделей;
 - Расхождение между стереопарами ошибки вычисляются ошибок по максимальной разности между значениями координат связующей точки, вычисленными по различным моделям (стереопарам).
- раздел Включать в отчет позволяет выбрать, какие значения включаются в отчет:
 - о Отчет по изображениям результаты уравнивания по изображениям;

 Отчет по стереопарам — список стереопар и значения углов конвергенции (стереоуглов);

Список стереопар в отчете отображается только в том случае, когда выполняется уравнивание с созданием стереопар, то есть установлен флажок Стереопары на закладке Снимки окна Параметры.

- Отчет по блоку результаты уравнивания по всему блоку;
- Отмечать превышение допуска ошибки с превышением допусков, заданных в разделе Допуски на ошибки, отмечаются в отчете знаком *;
- Не печатать допустимые информация об ошибках в пределах допусков, заданных в разделе Допуски на ошибки, не включается в отчет;
- Каталог точек список уравненных координат точек фототриангуляции (X, Y, Z);
- Печатать ошибки в список уравненных координат добавляются значения ошибок в плане (Exy) и по высоте (Ez);
- Включать элементы ориентирования в отчет добавляются коэффициенты перехода к координатам на изображении и поправок к коэффициентам;
- Включить список связующих точек, исключенных по углу засечки в отчет добавляется список связующих точек, исключенных по углу засечки.
- раздел Объединения предназначен для настройки отображения в отчете результатов объединения снимков, полученных с одного витка, а также определения значения допуска на ошибку объединения (СКО):
 - Подробный отчет в отчет включается полная статистика (детальная и общ) по объединению снимков;
 - Краткий отчет в отчет включается только общая статистика по объединению снимков;
 - Не включать информация об объединении снимков не включается в отчет;
 - Отмечать превышение допуска значения СКО, которые превышают величину допуска, заданную в поле Допуск на сшивку объединения, отмечаются в отчете знаком *;
 - Допуск на сшивку объединения позволяет задать допуск на СКО объединения.
- раздел Допуски на ошибки позволяет задать допуски на ошибки опорных, контрольных и связующих точек на снимке и на местности;
- раздел Сортировка предназначен для выбора порядка отображения в отчете списка точек, которые содержат ошибки:
 - По имени точки точки с ошибками отображаются в алфавитном порядке;
 - По величине ошибки точки сортируются по возрастанию значения ошибок уравнивания

Ошибка в метрах в сканерном стереоблоке — это ошибка решения прямой засечки: по стереопаре вычисляются координаты Хвыч, Үвыч, Zвыч и сравниваются с заданными в каталоге координатами Хкат, Yкат, Zкат.

Ошибки в пикселах — это ошибка решения обратной засечки: по известным координатам на местности (X, Y, Z) вычисляются координаты на снимке (*Хвыч*, *Yвыч*) и сравниваются с измеренными координатами на снимке (*Хизм*, *Yизм*). При уравнивании сканерного блока, в случае отсутствия стереопар, эти ошибки для выбранной опорной или контрольной точки выводятся в разделе **Ошибки на снимках** окна **Атрибуты точки**.

Ошибка на снимке в метрах — это смещение точки на местности, которое представляет собой расстояние между измеренной точкой на местности и точкой, рассчитанной с учетом элементов внешнего ориентирования.

8.5. Поэтапное уравнивание

В системе предусмотрена возможность поэтапного уравнивания блока сканерных космических снимков, разбитого на подблоки. Под поэтапным уравниванием подразумевается уравнивание блока в несколько этапов без изменения результатов внешнего ориентирования снимков. При этом на каждом этапе происходит уравнивание только части снимков блока (подблока), другие подблоки не участвуют в уравнивании на этом этапе.

Поэтапное уравнивание возможно только при использовании строгого и RPC-методов уравнивания.

В некоторых случаях при применении поэтапного уравнивания возникает вероятность увеличения ошибок по связи.

Поэтапное уравнивание рекомендуется в следующих случаях:

- блок состоит из снимков, которые различаются по типу сенсора, разрешению или количеству опорных точек с измеренными координатами;
- блок формируется постепенно, по мере поступления материала (например, если заказчик передает снимки партиями);

• блок по форме имеет выраженные подблоки: например, есть «узкое» место с недостаточным количеством снимков; в таком случае рекомендуется разбить блок в «узком» месте на два подблока и уравнять их в два этапа.

Разбиение блока на подблоки осуществляется вручную с помощью информации о характеристиках снимков проекта в таблице Снимки проекта окна Этапы уравнивания: съемочная система, дата съемки, отклонение от надира, количество опорных и связующих точек.

Для настройки параметров поэтапного уравнивания служит окно **Этапы уравни**вания.

Этапы Перенестить: Перенестить: Очики проекта 1stage 2 SPOT5/HRG1 1.0 1.0 Вверх Вверх 2 stage 3 SPOT5/HRG1 19.3 19.3 SCENE 5 123-254 06_09_270 3 stage 2 SPOT5/HRG2 7.6 7.6 BHU3 SCENE 5 123-254 06_09_2160 SCENE 5 123-254 06_09_210 SCENE 5 123-254 06_09_210 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100	37an 18_14_40 1T 1 stage 18_26_09 1T 2 stage 18_14_48 1T 1 stage 18_26_17 1T 2 stage 18_26_27 1 3 stage	Съемс SPOT5/I SPOT5/I SPOT5/I SPOT5/I
Иня Число снинков Съемочные системы Міл. отклонение от надира Мах. отклонен* 1 stage 2 SPOT5/HRG1 1.0 1.0 Bepsx Bepsx 2 stage 3 SPOT5/HRG1 19.3 19.3 BHu3 SCENE 5 123-254 06_09_270 3 stage 2 SPOT5/HRG2 7.6 7.6 BHu3 SCENE 5 123-254 06_09_210 SCENE 5 123-254 06_09_160 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_160 SCENE 5 123-255 06_09_160 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100 SCENE 5 123-255 06_09_100	Этал 8_14_40 1Т 1 stage 8_26_09 1Т 2 stage 8_14_48 1Т 1 stage 8_26_17 1Т 2 stage 8_14_39 2Т 3 stage	Съенк SPOT5/I SPOT5/I SPOT5/I SPOT5/I
Listage 2 SPOT5/HRG1 1.0 1.0 SCENE 5 123-254 06_09_27 (2000) SCENE 5 123-254 06_09_127 (2000) SCENE 5 123-255 06_09_160 (2000) SCENE 5 123-255 06_09_100 (2000) SCENE 5 123-255 06_09_00 (2000) 123-255 06_09_00 (2000) 123-255 06_09_	14_40 1 1 stage 18_26_09 1 2 stage 18_14_48 1 1 stage 18_26_17 1 2 stage 18_26_17 1 2 stage 18_14_39 2 3 stage	SPOT5/I SPOT5/I SPOT5/I SPOT5/I
2 stage 3 SPOTS/HRG1 19.3 19.3 BHH/3 SCENE 5 125-254-06_09_16 SCENE 5 125-255 06_09_270 SCENE 5 125-255 06_09_160 I25-255 06	18_26_09 1T 2 stage 18_14_48 1T 1 stage 18_26_17 1T 2 stage 18_14_39 2T 3 stage	SPOT5/I SPOT5/I SPOT5/I
3 stage 2 SPOT5/HRG2 7.6 7.6 SCENE 5 123-255 06_09_27 (SCENE 5 123-255 06_09_16 0 SCENE 5 125-255 06_09_16 0 SCENE 5 125-255 06_09_10 0 SCENE 5 125-255 06_09_10 0	8_14_48 1 T 1 stage 8_26_17 1 T 2 stage 8_14_39 2 T 3 stage	SPOT5/
SCENE 5 125-255 06_09_16 0 SCENE 5 125-255 06_09_01 0 SCENE 5 125-255 06_09_01 0 SCENE 5 125-256 06_09_16 0	8_26_17 1 T 2 stage 8_14_39 2 T 3 stage	SPOT5/
SCENE 5 126-255 06_09_01 0 SCENE 5 125-255 06_09_10 0 SCENE 5 125-256 06_09_160	8_14_39 2 T 3 stage	or or on
SCENE 5 125-250 06_09_16 0		SPOT5/I
	8_26_25 1 T 2 stage	SPOT5/I
SCENE 5 126-256 06_09_01 0	18_14_47 2 T 3 stage	SPOT5/
4		
		-
Создать переиненовать удалить удалить все		
Снижи, уравниваемые на даннои этапе Неуравниваемые ог	имки	
		A
имя Съемочная система дата съемки Отклонение от надира имя Съемочная	я система дата се	семки (
SCENE 5 123-254 06_09_27 08_14_40 1 T SPOT5/HRG1 27/09/2006 08:14:40.000 1.0 5		
SCENE 5 123-255 06_09_27 08_14_48 1 T SPOT5/HRG1 27/09/2006 08:14:48.000 1.0 5		
		_
		<u>·</u>
		- 1
OK		Отмена

Рис. 35. Окно «Этапы уравнивания»

Окно Этапы уравнивания содержит следующие таблицы:

- Этапы таблица списка этапов для последовательного уравнивания подблоков, содержит следующие столбцы:
 - Имя заданное имя этапа уравнивания;
 - Число снимков количество снимков подблока для уравнивания на выбранном этапе;
 - Съемочные системы тип съемочной системы снимков подблока (или списка съемочных систем в случае разных типов);

- Міп. отклонение от надира минимальное значение отклонения от надира у снимков подблока;
- **Мах. отклонение от надира** максимальное значение отклонения от надира у снимков подблока;
- Измерения опорных точек количество опорных точек, координаты которых измерены на снимках подблока.
- Снимки проекта таблица всех снимков проекта с их характеристиками, содержит следующие столбцы:
 - о **Имя** имя снимка;
 - Этап этап последовательного уравнивания подблоков;
 - Съемочная система тип съемочной системы (спутник/сенсор);
 - Дата съемки дата и время съемки;
 - Отклонение от надира угол отклонения от надира (в градусах);
 - Опорных точек количество опорных точек с измеренными координатами;
 - Связующих точек количество связующих точек с измеренными координатами;
 - Маршрут номер маршрута снимка.
- Неуравниваемые снимки таблица снимков, не выделенных в подблоки для выполнения поэтапного уравнивания, содержит следующие столбцы:
 - Имя имя снимка;
 - Съемочная система тип съемочной системы (спутник/сенсор);
 - Дата съемки дата и время съемки;
 - Отклонение от надира угол отклонения от надира (в градусах);
 - Опорных точек количество опорных точек с измеренными координатами;
 - Связующих точек количество связующих точек с измеренными координатами;
 - Маршрут номер маршрута снимка.

• Снимки, уравниваемые на данном этапе — таблица снимков подблока одного из этапов уравнивания.

Для поэтапного уравнивания блока сканерных космических снимков, выполните следующие действия:

- 1. Нажмите на кнопку 🔛 панели инструментов Уравнивание блока. Открывается окно Параметры.
- 2. На закладке Снимки в разделе Этапы уравнивания установите флажок Поэтапное уравнивание.
- 3. Нажмите на кнопку Этапы.... Открывается окно Этапы уравнивания.

📴 Этапы уравнивания						×
Этапы	Переместить	Снимки проекта				
Имя Число снимков Съемочные системы Міп. отклонение от надира Мах. откл	онения	Вверх	Ин	я	Этап	Съемо
			SCENE 5 123-254 06_0	09_27 08_14_40 1 T		SPOT5/HI
		Внив	SCENE 5 125-254 06_0	09_16 08_26_09 1 T		SPOT5/HI
			SCENE 5 123-255 06_0	09_27 08_14_48 1 T		SPOT5/HI
			SCENE 5 125-255 06_0	09_16 08_26_17 1 T		SPOT5/HI
			SCENE 5 126-255 06_0	09_0108_14_39 2 T		SPOT5/HI
			SCENE 5 125-256 06_0	09_16 08_26_25 1 T		SPOT5/HI
			SCENE 5 126-256 06_0	09_0108_14_472T		SPOT5/H
	_					
	•					
						-
Создать Переименовать Удалить Удал	ИТЬ ВСЕ		•			
Снимки, уравниваемые на данном этапе		Неуравниваемые с	нимки			
	<					<u></u>
Имя Съемочная система Дата съемки Отклонение от надира Опорных точ			Имя	Съемочная систе	ма	Дата
		SCENE 5 123-254 0	6_09_27 08_14_40 1 T	SPOT5/HRG1	27/	09/2006
		SCENE 5 125-254 0	6_09_16 08_26_09 1 T	SPOT5/HRG1	16/	09/2006
		SCENE 5 123-255 0	6_09_27 08_14_48 1 T	SPOT5/HRG1	27/	09/2006 (
		SCENE 5 125-255 0	6_09_16 08_26_17 1 T	SPOT5/HRG1	16/	09/2006 (
		SCENE 5 126-255 0	6_09_01 08_14_39 2 T	SPOT5/HRG2	01/	09/2006
		SCENE 5 125-256 0	6_09_16 08_26_25 1 T	SPOT5/HRG1	16/	09/2006
		SCENE 5 126-256 0	6_09_01 08_14_47 2 T	SPOT5/HRG2	01/	09/2006
						-
		•				▶
J						
OK						Отмена

Рис. 36. Окно «Этапы уравнивания»

- 4. Задайте имя этапа в поле ввода, расположенного внизу таблицы **Этапы** и нажмите на кнопку **Создать**.
- 5. В таблице **Неуравниваемые снимки** выделите с помощью кнопки мыши и горячей клавиши **Shift** одновременно несколько снимков подблока, которые необходимо уравнять на созданном этапе.
- 6. Нажмите на кнопку <. Выбранные снимки перемещаются в таблицу Снимки, уравниваемые на данном этапе.

7. Для создания последующих этапов уравнивания повторите пункты 4, 5, 6 необходимое количество раз.

Для редактирования строк в таблице Этапы служат кнопки Переименовать, Удалить, Удалить все, а также кнопки Вверх и Вниз для изменения порядка следования этапов при уравнивании.

- 8. Нажмите ОК, чтобы завершить настройку параметров поэтапного уравнивания.
- 9. В окне Параметры на закладке Снимки нажмите на кнопку Применить ко всем.
- 10. Настройте остальные параметры уравнивания и нажмите ОК.
- 11. Нажмите на кнопку 🚾 Уравнять для запуска процесса поэтапного уравнивания.

8.6. Рекомендации по уравниванию моноблока

Моноблок — это набор перекрывающихся снимков, как правило, с малой площадью области взаимного перекрытия. Чаще всего моноблоки состоят из снимков, полученных с разных сенсоров и со значительным интервалом по дате съемки.

Наличие в блоке снимков со значительной разницей в дате съемки затрудняет работу коррелятора при автоматическом измерении связующих точек. Это возникает по ряду причин:

- различные параметры освещенности;
- съемка в разные времена года;
- разное разрешение снимков;
- изменение состояния и ситуации на местности (строительство новых объектов, вырубка леса);
- появление перспективных изображений вследствие того, что угол отклонения от надира сильно отличается у различных снимков блока;
- взаимная точность данных определяется абсолютной точностью положения спутника на орбите.

При обработке моноблоков на различных этапах уравнивания существуют следующие рекомендации:

1. На этапе формирования блока снимки распределяются по маршрутам в зависимости от набора исходных данных.

Рис. 37. Схема формирования моноблока в системе

2. На этапе измерения координат точек сети существуют следующие рекомендации по настройке параметров автоматического измерения координат связующих точек:

Рис. 38. Настройка параметров автоматического измерения координат связующих точек

3. На этапе уравнивания моноблока выполните следующие действия:

Уравнивание моноблока рекомендуется выполнять методом последовательных приближений с отбраковкой.

- 1) Нажмите на кнопку 🔛 панели инструментов **Уравнивание блока**. Открывается окно **Параметры**.
- 2) На закладке Точки введите следующие параметры:
 - в разделе Точность измерения точек в поле СКО измерений на снимках задайте 0.5 пикс;
 - в разделе **Ошибка единицы веса геодезических координат** в полях **в плане** и **по высоте** введите 1 м;

- в разделе Использование точек в поле Пороговое приращение координат (пикс.) введите 0.01;
- в разделе Модель рельефа в уравнивании установите Использовать матрицу высот и загрузите матрицу высот из файла.
 - Лочи при уравнивании моноблока настоятельно рекомендуется использовать матрицу высот в связи с недостаточной площадью перекрытия снимков. Иначе появляются погрешности в работе коррелятора, а также возникают ошибки при вычислении координаты Z в измерениях координат связующих точек.
- 3) Нажмите ОК.
- 4) Нажмите на кнопку 🚾 панели инструментов Уравнивание блока.
- Связующие точки с ошибкой по связи более 10-20 пикселей переведите в статус Исключена в окне Атрибуты точки в разделе По связи (см. раздел 5.5).
- 6) В окне Параметры на закладке Точки в разделе Использование точек установите флажок Использовать связующие в уравнивании.
 - Для снимков с "некачественными" элементами внешнего ориентирования рекомендуется в окне Параметры на закладке Снимки в разделе Поправки установить Аффинная.
 - Для снимков с точными элементами внешнего ориентирования рекомендуется в окне Параметры на закладке Снимки в разделе Поправки установить Нет. В таком случае поправка не вычисляется.
- 7) Нажмите ОК. Нажмите на кнопку √ панели инструментов **Уравнивание блока**, чтобы уравнять блок повторно.
- Связующие точки с ошибкой по связи более 2-5 пикселей переведите в статус Исключена в окне Атрибуты точки в разделе По связи (см. раздел 5.5).
- 9) Проведите контроль точности уравнивания (см. раздел 11).
 - На всех этапах по уравниванию требуется оценка точности результатов уравнивания. Оцените согласованность измерений связующих точек и ЭВО. При уравнивании моноблока, оценка точности уравненных значений координат связующих точек в метрах отображается равной 0. Это связано с тем, что для связующих точек в качестве опорной информации выступает матрица высот. Поэтому контроль качества обработки моноблока сводится к оценке ошибок на связующих точках.

8.7. Рекомендации по количеству точек для уравнивания сканерного блока

При уравнивании снимков сканерных моно/стереоблоков различными методами существуют рекомендации по количеству используемых контрольных и опорных точек.

Для космических сканерных изображений используются только планово-высотные опорные точки (с координатами X, Y, Z).

Рис. 39. Количество точек, рекомендуемое для уравнивания сканерного блока строгим методом

Если в моноблоке есть снимки с тройным или четверным перекрытием, рекомендуется измерить несколько точек в этих зонах.

Количество опорных точек можно уменьшить за счет связующих точек, измеренных в четверном или тройном перекрытии.

Рис. 40. Количество точек, рекомендуемое для уравнивания сканерного блока с использованием RPC

Количество опорных точек можно уменьшить за счет связующих точек, измеренных в четверном перекрытии.

Рис. 41. Количество точек, рекомендуемое для уравнивания сканерного блока универсальным методом

Рекомендованное количество контрольных точек на схемах не является абсолютным и во многих случаях определяется требованиями к конкретному проекту со стороны заказчика. Тем не менее, наличие контрольных точек необходимо для объективной оценки точности уравнивания.

9. Процесс уравнивания

Для того чтобы выполнить уравнивание, необходимо настроить параметры уравнивания проекта и нажать на кнопку 🚾 панели инструментов **Уравнивание блока**. Запускается процесс вычислений и открывается окно, в котором отображается ход процесса уравнивания.

Рис. 42. Окно состояния процесса уравнивания

Сходимость процесса уравнивания отображается на графике. Также в окне отображается номер итерации, метод, которым выполняется уравнивание, значение поправки.

Если итерационный процесс не сходится, прервите процесс уравнивания при помощи кнопки **Стоп**, чтобы отобразить результат, полученный на текущей итерации. Для удаления всех результатов уравнивания нажмите на кнопку **Отмена**.

Несходимость уравнивания может быть обусловлена ошибками взаимного ориентирования, ошибками в координатах опорных точек или неправильными параметрами уравнивания (см. раздел 13), либо неправильно заданной системы координат (правая-левая).

Процесс уравнивания прерывается только между итерациями, при этом результаты уравнивания сохраняются.

Для сохранения удовлетворительных результатов уравнивания нажмите на кнопку **П** панели инструпентов **Уравнивания блока**. Перейдите к дальнейшей обработке проекта (см. руководство пользователя «Создание проекта»).

Для восстановления текущего состояния блока служит кнопка 静 панели инструментов **Уравнивание блока**. Также кнопка позволяет загрузить результаты уравнивания при загрузке проекта.

Для того чтобы при неудовлетворительных результатах уравнивания вернуть блок в исходное состояние (до того как был запущен процесс уравнивания), нажмите на кнопку 🐼 панели инструментов **Уравнивание блока**.

10. Создание отчета уравнивания

В системе предусмотрена возможность просмотра полной статистики уравнивания, сводной информации об ошибках уравнивания и контрольных данных.

Для отображения отчета уравнивания служит кнопка 🗎 панели инструментов Уравнивание блока.

🛱 Отчет					<u>_ ×</u>
┥ 🖻 🗛 🔜 🖹 🎒					
Оценка точности уравниван Превышения допусков отмеч Точки с допустимыми откло	ия блока ены знаком "*". нениями в отчет :	не включены.			
Сводная информация об оши	бках по блоку				
N	Xcp-Xr	Үср-Үг	Zcp-Zr	Exy	(metre)
допуск:	0.200	0.200	0.200	0.200	
1	-0.285*	-0.239*	0.497*	0.372*	
2	-0.159	-0.039	-0.304*	0.164	
 					•
					Закрыть

Рис. 43. Окно отчета уравнивания

Панель инструментов окна Отчет содержит следующие кнопки:

- 😰 позволяет обновить отчет;
- М позволяет начать поиск в тексте отчета (Ctrl+F);
- 🖳 позволяет сохранить отчет в файлы: *.txt, *.htm или *html;

Также отчет сохраняется автоматически в папке \backup проекта вместе с результатами уравнивания (только для снимков центральной проекции).

- 📑 позволяет сохранить отчет в ресурсах активного профиля;
- 🗁 позволяет распечатать отчет.

В отчете уравнивания отображаются следующие значения:

- расхождения на опорных, контрольных и связующих точках и центрах проекций в целом по блоку и по каждой точке;
- каталог координат точек;
- элементы внешнего ориентирования снимков;
- поправки GPS;
- поправки элементов внешнего ориентирования.

Содержание отчета настраивается на закладке **Отчет** окна **Параметры** (см. раздел 8.4 и раздел 7.4).

Для отображения ошибок используются следующие обозначения:

- *X, Y, Z* значение координат из модели (маршрута в методе независимых маршрутов, стереопары в методе независимых стереопар);
- Х1, Х2, У1, У2, Z1, Z2 значения координат точки на двух разных моделях;
- Хср, Уср, Zср значение координат точки, усредненное по всем моделям;
- *Хг, Yг, Zг* геодезическое значение координат точки, заданное пользователем для опорных и контрольных точек;
- Exy, Ez средние ошибки координат точек в плане и по высоте;
- *dX, dY, dZ, dS* расхождения на опорных точках;
- *dX, dY, dZ, dXY* поправки GPS на центрах фотографирования.

11. Контроль точности уравнивания

Контроль точности уравнивания блока — проверка величин ошибок определения плановых и высотных координат точек проекта. Результаты уравнивания отображаются графически в виде векторов ошибок, числовые значения ошибок содержатся в отчете уравнивания.

При неудовлетворительных результатах уравнивания и наличии грубых ошибок в системе предусмотрена возможность улучшения результатов с помощью редактирования положения точек. Для этого следует «перемерить» точки, на которых векторы ошибок превышают установленный допуск и отображаются красным цветом.

Для изменения типа точек выполните следующие действия:

- 1. На схеме блока или в списке точек выделите опорную точку, ошибка на которой превышает установленное допустимое значение.
- В окне Атрибуты точки нажмите на кнопку В Координаты. Открывается окно Точки триангуляции, в котором отображаются координаты выделенной опорной точки и СКО определения координат. Двойной щелчок по имени точки позволяет открыть окно Измерение точек для изменения положения точки на снимках.

Для изменения положения точек на снимке выполните следующие действия:

- 1. На схеме блока или в списке точек выделите точку, ошибка на которой превышает установленное допустимое значение.
- 2. В окне **Атрибуты точки** нажмите на кнопку **Ш Измерить**. Открывается окно **Измерение точек**.

По умолчанию в окне Точки триангуляции отображается список точек, выделенных на схеме блока. На снимках также отображаются только выделенные точки.

Следующие кнопки на панели инструментов окна Точки триангуляции позволяют изменить фильтр для списка точек, которые отображаются в таблице и на снимках:

- 🔽 все точки;
- 🖓 все точки на открытых изображениях;
- 🕎 общие точки на открытых изображениях;
- Точки, выделенные на схеме блока на этапе уравнивания (подробнее см. раздел *Модуль «Измерение точек»* в руководстве пользователя «Построение сети»).

Рис. 44. Редактирование точек по списку

- 3. Измените положение точки вручную или с помощью коррелятора (см. описание работы коррелятора в руководстве пользователя «Построение сети»).
- 4. Нажмите ОК для выхода из модуля Измерение точек.
- 5. Нажмите на кнопку 🚾 панели инструментов **Уравнивание блока**, чтобы уравнять блок с учетом нового положения точек.

Для того чтобы использовать межмаршрутные и неперенесенные в каком-либо из маршрутов точки в процессе уравнивания *методом независимых маршрутов* или *независимых стереопар*, необходимо измерить координаты этих точек на соседних изображениях внутри маршрута в процессе триангуляции либо в окне **Измерение точек** (см. руководство пользователя «Построение сети»).

12. Экспорт и импорт данных

12.1. Экспорт исходных данных

В системе предусмотрена возможность экспорта исходных данных для дальнейшего уравнивания в программных комплексах сторонних производителей, таких как, например, *AeroSys*.

В системе предусмотрена возможность экспорта в формат системы *AeroSys*, а также в формат *PAT-B*.

Экспорт или импорт данных уравнивания возможен *только* в проектах снимков центральной проекции.

Для экспорта исходных данных выполните следующие действия:

1. Нажмите на кнопку 🔛 панели инструментов **Уравнивание блока**. Открывается окно **Параметры экспорта**.

Параметры экспорта				
Форматы экспорта				
📝 Проект AeroSys (*.aer)				
D:\импорт-экспорт\points.	aer			
📝 РАТ-В — координаты точе	к XYZ (*	xyz)		
D:\импорт-экспорт\points.	xyz			
📝 РАТ-В — элементы внешн	его ори	ентирования — XYZ	и матриц	ιa (*.ori)
D:\импорт-экспорт\points.	ori			
📝 Элементы внешнего ориен	нтирова	ния — ХҮZ и углы (*.	cri)	
D:\импорт-экспорт\points.	cri			
📝 Измерения на снимках (*.ir	m)			
D:\импорт-экспорт\points.	im			
веса	1.000			
опорные точки	1.000			
центры фотографирования	1.000			
углы внешнего ориент.	омега	1.000		
	фи	1.000		
	каппа	1.000		
Точность измерений (СКО)				
измерения на снимках	0.0050	00	мм	
Масштабировать измерения и	на сним	ках		
1.000				

Рис. 45. Параметры экспорта

- 2. В разделе **Форматы экспорта** выберите форматы, в которые необходимо экспортировать данные:
 - проект AeroSys служит для дальнейшего уравнивания в программе *AeroSys*. Файлы этого формата имеют расширение aer;

При экспорте в формат *AeroSys* экспортируются все измерения проекта системы, подробнее см. официальный сайт компании *AeroSys*.

- формат РАТ-В (координаты точек XYZ) координаты измеренных точек в метрах, файл расширением хуz;
- формат РАТ-В (элементы внешнего ориентирования ХҮZ и матрица) координаты центров проекции снимков и матрица угловых элементов внешнего ориентирования, файл с расширением ori;
- Элементы внешнего ориентирования ХҮZ и углы координаты центров проекции снимков и углы внешнего ориентирования, файл с расширением cri;
- Измерения на снимках координаты измеренных точек в пикселах, файл с расширением im.
- 3. [опционально] Для того чтобы изменить систему координат при экспорте уравнивания, установите флажок **Менять местами X и Y**.

Если не установлен флажок **Менять местами Х и Ү**, то исходные данные экспортируются в правой системе координат. Иначе — в левой системе координат.

- 4. Нажмите на кнопку раздела **Форматы экспорта**. Открывается окно **Со-хранить**.
- 5. Задайте имя и путь для файла с результатами уравнивания.
 - Имя и путь к файлу, заданные для формата **проект AeroSys**, автоматически устанавливается для всех выбранных форматов. Чтобы задать имя и путь для каждого файла вручную, снимите флажок **Присваивать имена файлов по образцу**.
- [опционально] Для коррекции точности геодезических координат опорных точек, центров фотографирования и элементов внешнего ориентирования, скорректируйте значения весов этих параметров в разделе **Веса** (по умолчанию 1).
 В выходном файле значение точности будет поделено на заданный вес.
- 7. [опционально] Для того чтобы изменить точность априорной СКО измерений точек на снимках, задайте значение измерения на снимках в мм в разделе Точность измерений (СКО).

В экспортируемых файлах кроме информации об измерениях (координаты точек на снимках, геодезические координаты опорных точек, элементы внешнего ориентирования снимков) содержится информация об априорных точностях этих измерений.

- [опционально] Чтобы экспортировать результаты уравнивания в необходимых единицах измерений (например, в микронах), введите в поле ввода Масштабировать измерения на снимках коэффициент, на который умножаются все измерения.
- 9. Нажмите ОК для завершения экспорта.

12.2. Импорт результатов уравнивания

В системе предусмотрена возможность импорта результатов уравнивания, полученных в программных комплексах сторонних производителей.

Экспорт или импорт данных уравнивания возможен *только* в проектах снимков центральной проекции.

При импорте результатов уравнивания, полученных в программе *AeroSys* или других программных комплексах, рекомендуется выбрать *Декартову систему координат* для проекта системы, в противном случае возможно появление ошибок в плане и по высоте в координатах центров проекции снимков.

Для импорта результатов уравнивания выполните следующие действия:

1. Нажмите на кнопку 렀 панели инструментов **Уравнивание блока**. Открывается окно **Импорт уравнивания**.

😎 Импорт уравнивания	
Формат импорта	
💿 Проект AeroSys	
РАТ-В (матрица вращения)	
PAT-B (углы)	
РАТ-В — координаты точек XYZ (*.xyz)	
РАТ-В — элементы внешнего ориентирования — ХҮZ и матрица (*	f.ori)
Координаты	
🕅 Менять местами X и Y	
Углы	
📝 Обратить фокус	
🗐 Обратить матрицу	
Импорт Отмена	

Рис. 46. Параметры импорта из проекта AeroSys

- 2. В разделе Формат импорта выберите один из форматов:
 - Проект AeroSys импорт результатов уравнивания, полученных в программе AeroSys;
 - РАТ-В (матрица вращения) импорта результатов уравнивания из файла, который содержит координаты центров проекции снимков и матрицу угловых элементов внешнего ориентирования;
 - РАТ-В (углы) импорта результатов уравнивания из файла, который содержит координаты центров проекции снимков и углы внешнего ориентирования;
- 3. Выберите файлы для импорта в зависимости от выбранного формата:
 - файл *.aer для импорта проекта AeroSys;
 - файлы *.хуz с координатами точек и *.ori с элементами внешнего ориентирования;
 - файлы *.xyz с координатами точек и *.cri с элементами внешнего ориентирования и координатами точек.
- 4. [опционально] Для того чтобы изменить систему координат при импорте уравнивания, в разделе **Координаты** установите флажок **Менять местами Х и Ү**.

Если не установлен флажок **Менять местами X и Y**, то исходные данные импортируются в правой системе координат. Иначе — в левой системе координат.

- 5. [опционально] При импорте из формата РАТ-В в разделе Углы предусмотрены следующие настройки импорта:
 - Обратить фокус установите флажок, если направление осей системы координат камеры и осей системы координат в проекте не совпадают. Для импорта матрицы вращения флажок установлен по умолчанию.
 - Обратить матрицу позволяет использовать обратную матрицу поворота углов.
- 6. Нажмите Импорт для завершения импорта данных в систему.

13. Этапы контроля уравнивания

13.1. Контроль уравнивания в свободной модели

13.1.1. Деление на подблоки

Деление на подблоки является необходимым условием при контроле уравнивания в свободной модели в следующих случаях:

- если в блоке содержатся грубые ошибки, то для поиска ошибок блок разбивается на подблоки таким образом, чтобы в каждом из подблоков содержалась одна грубая ошибка;
- если используется блок длиной более 20 базисов, то уравнивание подблока занимает меньше времени, чем уравнивание всего блока одновременно.

13.1.2. Контроль ошибок в значении фокусного расстояния камеры

Для того чтобы выявить грубые ошибки в значении фокусного расстояния камеры, рекомендуется ввести приближенно базис съемки. Если значение базиса введено правильно, то после уравнивания в окне **Параметры** на закладке **Отчет** в разделе **Масштаб съемки** отображается верное значение масштаба съемки. Если рассчитанные высотные координаты точек сети и центров проекции значительно отличаются от фактических значений координат точек сети и центров проекции, то фокусное расстояние задано неверно.

При уравнивании свободной модели значения рассчитанных высотных координат центров проекции близки к нулю.

При уравнивании свободной модели значения рассчитанных высотных координат точек сети отрицательны и близки по абсолютной величине к высоте съемки.

При уравнивании *свободной модели* небольшие ошибки в значении фокусного расстояния камеры не выявляются. В этом случае рекомендуется проводить уравнивание с опорными точками.

13.1.3. Контроль грубых ошибок постановки межмаршрутных связей

Для того чтобы выявить грубые ошибки постановки межмаршрутных связей, рекомендуется проводить уравнивание подблоков *методом независимых маршрутов* в свободной модели.

Если маршрут состоит из 20 базисов и больше, ошибки могут превышать расчетные в 10 — 20 раз.

Маршруты с длиной более 20 базисов рекомендуется разбивать на части.

Для получения правильных значений ошибок в метрах необходимо корректно задать базис съемки (с точностью 30-50%). Проверка правильности заданного базиса осуществляется после уравнивания в окне **Параметры** на закладке **Отчет** в разделе **Масштаб съемки** по вычисленному значению масштаба съемки.

Если маршрут состоит из 15 снимков и меньше, рекомендуется проводить уравнивание всего блока *методом независимых маршрутов* в свободной модели.

13.1.4. Промежуточный контроль грубых ошибок постановки связующих точек

После проведения контроля уравнивания *методом независимых маршрутов* в свободной модели рекомендуется выполнить контроль грубых ошибок постановки связующих точек посредством уравнивания *методом независимых стереопар*. Удовлетворительными считаются ошибки уравнивания, не превышающие 2-4 допуска.

13.1.5. Контроль грубых ошибок в межмаршрутных неперенесенных точках

Для того чтобы выявить грубые ошибки в межмаршрутных точках, неперенесенных в продольном перекрытии на одном из маршрутов, рекомендуется уравнять блок *методом независимых стереопар* в *свободной модели* (до уравнивания методом связок).

Неперенесенная точка — точка, координаты которой измерены только в одном снимке на одном маршруте (не измерена в продольном перекрытии соседних снимков маршрута).

Если координаты точки измерены в продольном перекрытии соседних снимков маршрута, необходимо проверить распределение связующих точек в соответствующих этой точке триплетах. Если связующие точки расположены в небольшой области перекрытия, рекомендуется добавить дополнительные связующие точки на всей области перекрытия.

13.1.6. Контроль ошибок постановки связующих точек

Для того чтобы выявить ошибки постановки межмаршрутных и внутримаршрутных связей, рекомендуется уравнять блок *в свободной модели методом независимых стереопар*, а затем — *методом связок*. Рекомендуется чередовать два вида уравнивания до получения значений ошибок, не превышающих 75% допуска на ошибки по связи до уравнивания с опорными точками, так как при использовании опорных данных величина ошибок возрастает.

Первое уравнивание рекомендуется производить *методом независимых стереопар* как более устойчивым, а в дальнейшем чередовать *методы независимых стереопар* и *связок*.

Для того чтобы получить корректные значения ошибок постановки межмаршрутных и внутримаршрутных связей в допуске, рекомендуется задать приближенно базис съемки с точностью 10 — 20%.

13.1.7. Контроль ошибочных автоматически поставленных точек

При автоматической постановке связующих точек возможны ситуации, когда явно ошибочные точки исправлены, а максимальная (превышающая допуск) ошибка уравнивания наблюдается на точках, поставленных правильно. Одной из причин может быть неправильная работа процедуры автоматической постановки точек (сложная местность, неподходящие параметры автомата).

Для того чтобы выявить ошибки автоматической постановки связующих точек, рекомендуется выполнить контроль равномерности постановки точек и проверить величину ошибок в ближайших стереопарах и триплетах.

Также рекомендуется выполнить контроль каждой точки, начиная с точек с максимальной ошибкой. Для этого выполните следующие действия:

- 1. Проверьте расположение точки в стереорежиме:
 - точки не должны стоять на тенях деревьев;
 - правильность постановки точки по высоте.
- 2. Проверьте правильность опознавания точки:
 - На расстоянии 1/10 размера перекрытия стереопары рядом с проверяемой точкой поставьте еще одну точку.
 - 2) После уравнивания проверьте величину ошибки на обеих точках:
 - если на обеих точках ошибки имеют одинаковую величину (направление и размер), то проверяемая точка опознана правильно;

- если ошибка на проверяемой точке в допуске, а ошибка на новой точке содержит максимальную ошибку, то необходимо выполнить контроль равномерности точек;
- если на обеих точках ошибки имеют величину, близкую к пределу точности, рекомендуется завершить проверку точки.
- Проверьте несколько ближайших межмаршрутных связующих точек (все или минимум 3 равномерно распределенных в каждом перекрытии стереопар, в которые входит точка, и еще несколько точек на расстоянии 1—3 стереопары).
- 4. Проверьте наличие ошибок на новых связующих точках:
 - установите по одной связующей точке в триплетах, в которые входит проверяемая точка;
 - после уравнивания проверьте наличие ошибок на новых связующих точках. Ошибка появится на действительно ошибочных точках.

Если после проверки не найдены ошибочные точки, проверьте наличие других возможных источников ошибок:

- ошибки внутреннего ориентирования;
- деформация одного из снимков в блоке;
- неправильный выбор объектов для постановки связующих точек (см. раздел 14.7).

Для того чтобы получить ошибки связующих точек в допуске, рекомендуется удалить точки, которые содержат максимальную ошибку в соседних стереопарах и поставить точки в этой области вручную.

13.2. Контроль уравнивания с геодезической привязкой

13.2.1. Проверка правильности выбора системы координат

Проверка правильности выбора системы координат необходима в случаях, когда не сходится процесс уравнивания с геодезической привязкой.

Для того чтобы выявить ошибку в выборе системы координат, выполните следующие действия:

- 1. Проверьте правильность выбора левой или правой системы координат:
 - уравняйте блок в декартовой правой системе координат;
 - уравняйте блок в декартовой левой системе координат;

- сравните результаты уравнивания на наличие ошибок.
- 2. Проверьте правильность выбора типа системы координат. Для этого сравните координаты трех опорных точек, которые не лежат на одной прямой, с координатами этих точек на схеме блока до уравнивания.
- 3. Проверьте правильность записи координат точек выбранной системы координат наличие опечаток в координатах (лишние или пропущенные цифры, неправильный номер зоны).

13.2.2. Контроль ошибок уравнивания с учетом координат центров проекции

Для того чтобы выявить ошибки уравнивания с заданными координатами центров проекции, выполните следующие действия:

- 1. Выделите на схеме блока опорную точку с грубой ошибкой.
- 2. В окне **Атрибуты точки** нажмите на кнопку మ, чтобы изменить тип выделенной опорной точки и сделать её контрольной.
- 3. Нажмите на кнопку 🚾 панели инструментов **Уравнивание блока**, чтобы переуравнять блок.
- 4. Проверьте наличие случайной составляющей ошибок.

При большой постоянной ошибке по высоте в блоке после уравнивания рекомендуется проверить фокусное расстояние камеры и провести контроль выбора системы координат.

При большой *систематической* ошибке по высоте в блоке после уравнивания векторы высотных ошибок в центре блока направлены в противоположную сторону по отношению к векторам на краях блока. В этом случае рекомендуется убедиться в правильности выбора системы координат (учет кривизны Земли) и выполнить контроль внутреннего ориентирования (учет дисторсии).

13.2.3. Контроль ошибок уравнивания без центров проекции

Если в блоке используется 10 и более опорных точек, то рекомендуется задать маленький вес уравнений на опорные точки в пределах 0,01—0,1 и уравнять блок без центров проекции.

При большой систематической ошибке по высоте в блоке после уравнивания векторы высотных ошибок в центре блока направлены в противоположную сторону по отношению к векторам высотных ошибок на краях блока. В этом случае рекомендуется провести контроль выбора системы координат (учет кривизны Земли) и контроль внутреннего ориентирования (учет дисторсии).

При большой систематической ошибке *в плане* в блоке после уравнивания векторы плановых ошибок направлены от центра блока — происходит сжатие блока в одном направлении и растяжение блока в перпендикулярном направлении. В этом случае рекомендуется проверить наличие растяжения/сжатия снимков в одном направлении.

При уравнивании *методом независимых маршрутов* и *независимых стереопар*, когда задан малый вес уравнений на опорные точки в пределах 0,01 и меньше, происходит сжатие блока.

При уравнивании методом связок сжатие блока не происходит.

13.2.4. Контроль ошибок уравнивания методом связок

При уравнивании *методом связок* и при импорте результатов уравнивания для контроля уравниания в окне **Параметры** на закладке **Отчет** установите следующие параметры:

- в разделе Считать ошибки по связи установите от среднего.
- в разделе Включить в отчет установите флажки Ошибки уравнивания/по стереопарам/учитывать одиночные.

Если блок снимков, полученных длиннофокусной камерой или с коэффициентом продольного перекрытия снимков более 65%, уравнивается *методом связок*, то при увеличении фокусного расстояния или увеличении коэффициента продольного перекрытия происходит уменьшение отношения базиса к высоте съемки, тем самым высотные ошибки на опорных точках уменьшаются.

При уравнивании *методом независимых стереопар* уменьшение отношения базиса к высоте съемки приводит к увеличению высотных ошибок на опорных точках.

При уравнивании *методом связок* высотная ошибка на опорных точках переходит в высотную ошибку на связующих точках. В отчете высотная ошибка на опорных точках отображается в разделе **Ошибки по связующим точкам (от среднего)**.

При уравнивании *методом связок* ошибка на связующих точках, координаты которых измерены только на одной стереопаре, в некоторых случаях определяется остаточным поперечным параллаксом и разностью расстояний до центров проекции двух снимков стереопары на связующих точках. При отсутствии грубых ошибок уравнивания величина ошибки на связующих точках стремится к нулю и пренебрежимо мала.

14. Особенности уравнивания блоков аэрофотоснимков в системе

14.1. Особенности использования координат центров проекций

При уравнивании с заданными координатами центров проекции рекомендуется использовать *Декартову* систему координат или *истинную* систему координат (например, CK-42, WGS-84).

При уравнивании с заданными координатами центров проекции не используйте местную систему координат, которая приближенно учитывает кривизну Земли.

При уравнивании без центров проекции в местной системе координат не рекомендуется считать точными значения элементов внешнего ориентирования снимков, полученные при уравнивании. В местной системе координат происходит расхождение между высотными и плановыми координатами центров проекции, а также расхождение между угловыми элементами внешнего ориентирования снимков.

14.2. Съемка с большим коэффициентом продольного перекрытия

Съемка с большим коэффициентом продольного перекрытия (более 70%) характерна тем, что величина высотной ошибки на точках, координаты которых измерены на стереопарах, образованных соседними снимками маршрута, превышает плановую ошибку в несколько раз. При этом практически вся площадь блока попадает в области перекрытия трех и более снимков маршрута. Величина высотной ошибки на точках, координаты которых измерены на стереопарах, образованных снимками маршрута, взятыми через один/два/три снимка (в зависимости от величины перекрытия) имеет малое значение.

Способ обработки снимков блока с большим коэффициентом продольного перекрытия определяется видом конечного выходного продукта.

Для построения ортофотоплана с использованием внешней цифровой модели рельефа выполните следующие действия:

- 1. Проведите обработку всего блока снимков.
- 2. Выполните измерение координат каждой точки (связующей, опорной, контрольной) на всех снимках маршрута, на которых эта точка находится.
- 3. Выполните уравнивание методом связок.
- 4. В отчете по результатам уравнивания рекомендуется учитывать только ошибки на снимках и ошибки на опорных/контрольных точках.

Для построения трехмерных векторных объектов/моделей рельефа перед обработкой блока рекомендуется проредить снимки маршрутов так, чтобы продольное перекрытие прореженного блока составляло примерно 60%. Прореживание снимков рекомендуется выполнять при съемке с коэффициентом продольного перекрытия более 75—80 %.

Чтобы оценить коэффициент прореживания снимков, используйте следующее выражение:

(40/(100-*k*))-1, где *k* — коэффициент продольного перекрытия снимков в процентах.

Проанализируйте результаты:

- итоговое значение равно 0 рекомендуется обработать все снимки маршрутов;
- итоговое значение равно 1 рекомендуется проредить снимки маршрутов через *один* снимок;
- итоговое значение равно 2 рекомендуется проредить снимки маршрутов через два снимка;

Для построения ортофотоплана по внешней модели рельефа и трехмерных векторных объектов/моделей рельефа выберите один из следующих способов:

- перед обработкой блока проредите снимки маршрутов так, чтобы продольное перекрытие прореженного блока составляло около 60%;
- разбейте блок на два блока (полный и прореженный). Полный блок уравняйте и результаты этого уравнивания импортируйте в прореженный блок. Полный блок используйте для построения ортофотоплана. Прореженный блок — для построения трехмерных векторных объектов/моделей рельефа.

14.3. Съемка длиннофокусными камерами

Съемка, которая производится длиннофокусными камерами, характерна тем, что итоговые снимки имеют прямоугольную форму со значительным различием между длиной и шириной снимка.

Для получения трехмерных векторных объектов/моделей рельефа не рекомендуется проводить съемку длиннофокусными камерами, так как при обработке проекта возникают значительные высотные ошибки.

Для того чтобы уменьшить высотные ошибки на снимках при съемке длиннофокусной камерой, выполните следующие действия:

- при возможности разверните камеру так, чтобы длинная сторона снимка была ориентирована вдоль направления залета;
- задайте продольное перекрытие, равное 60%; в результате отношение базиса к высоте съемки становится максимальным и при обработке блока высотные ошибки на снимках принимают минимальные значения;
- выполните расстановку межмаршрутных связующих точек «змейкой», если используется недостаточно густая геодезическая сеть.

14.4. Съемка в разное время года

При обработке блока снимков, в который входят разновременные снимки, в том числе полученные в разное время года, возникают проблемы постановки связующих точек.

Если маршруты сняты в разное время года, то при постановке связующих точек в местах снимка, где нет возможности межмаршрутных стереонаблюдений, рекомендуется ставить связующую точку на один и тот же объект по отдельности в каждом маршруте. При постановке связующих точек на уровень земли следует учитывать поправку на возможное различие высоты травяного покрова, который закрывает основание объекта.

В маршрутах, снятых в разное время года, рекомендуется ставить связующие точки на объектах искусственного происхождения (столбах ЛЭП, строениях, дорогах).

14.5. Съемка со сплошными массивами леса

При обработке блока снимков с областями сплошных лесных массивов возникает проблема постановки связующих точек.

При обработке такой съемки невязка соседних маршрутов превышает ошибку, которая вызвана неверной постановкой точки. Точность уравнивания в областях со сплошными лесными массивами и в соседних с ними областях может быть ухудшена.

Если области сплошных лесных массивов невозможно исключить из обработки блока, рекомендуется ставить связующие точки на объектах искусственного происхождения (столбах ЛЭП, строениях, дорогах).

14.6. Уравнивание методом связок

При уравнивании *методом связок* на межмаршрутных связующих точках происходит отклонение от «среднего» уравненного положения по высоте на разных стереопарах в одну сторону. Отклонение по высоте определяется продольным параллаксом на межмаршрутных связующих точках в стереопарах, образованных снимками разных маршрутов.

При уравнивании *методом независимых стереопар* отклонение от «среднего» уравненного положения по высоте не происходит.

14.7. Постановка связующих точек на границах протяженных объектов

Если границы протяженных объектов либо окрестности границы таких объектов не содержат вдоль своего направления другие объекты, пересекающие границу, общий неравномерный фон либо искривления границы, то не рекомендуется ставить связующую точку в окрестностях границы.

Границы протяженных объектов — границы объектов и сами объекты: дороги (колеи), пашни (набор параллельных друг другу борозд) и другие аналогичные объекты.

Приложение А. Системы угловых элементов внешнего ориентирования

Угловые элементы внешнего ориентирования вычисляются и включаются в отчет в двух системах углов внешнего ориентирования — «омега-фи-каппа» и «альфаомега-каппа».

Последовательность поворотов в системе углов «омега-фи-каппа».

a)

Рис. А.1. Положительный поворот вокруг оси X на угол «омега»

б)

Рис. А.2. Положительный поворот вокруг оси Y на угол «фи»

в)

Рис. А.З. Положительный поворот вокруг оси Z на угол «каппа»

Последовательность поворотов в системе углов «альфа-омега-каппа».

a)

Рис. А.4. Отрицательный поворот вокруг оси Y на угол «альфа»

б)

Рис. А.5. Положительный поворот вокруг оси X на угол «омега»

Рис. А.6. Положительный поворот вокруг оси Z на угол «каппа»