Цифровая фотограмметрическая система

Версия 6.4

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Обработка лидарных данных

Оглавление

1. О документе	3
2. Использование лидарных данных в системе	
3. Окно «Загрузка лидарных данных»	
4. Загрузка и отображение лидарных данных	
5. Нарезка на листы	
6. Преобразование лидарных данных в матрицу высот	
7. Фильтрация LAS	
8. Преобразование системы координат LAS-файлов	
9. Обрезка облака точек по полигонам	

1. О документе

Настоящий документ предназначен для ознакомления с процессом обработки лидарных данных и облаков точек для использования в системе *PHOTOMOD* и содержит описание загрузки, режимов просмотра и обработки лидарных данных.

2. Использование лидарных данных в системе

В системе предусмотрена возможность загрузки лидарных данных, преобразования этих данных в матрицу высот и сохранение матрицы в ресурсах активного профиля.

Лидар (LIDAR англ. Light Detection And Ranging) — технология получения и обработки информации об удаленных объектах с помощью активных оптических систем, использующих явления отражения света и его рассеивания в прозрачных и полупрозрачных средах. Полученные данные называют *лидарными данными*.

Лидарные данные поставляются в файлах формата LAS, которые содержат координаты XYZ точек лазерного отражения и их атрибуты (порядковый номер отраженного импульса, общее количество отраженных импульсов в точке, данные классификации объектов).

В системе поддерживается использование файлов формата LAS независимо от способа получения данных.

В системе поддерживается использование файлов LAS с форматами хранения точечных объектов с 0 до 2. При попытке импорта файлов в формате большем 2 выдается сообщение об ошибке.

Формат LAS поддерживает классификацию точек на основе спецификаций, разработанных обществом *American Society for Photogrammetry and Remote Sensing (ASPRS)*. Ниже приведена, предназначенная для LAS-файлов версии 1.4:

Таблица 1. Классификация

Значение классификации	Тип классификации
0	Классификация не выполнялась
1	Не присвоено
2	Земля
3	Низкорослая растительность
4	Растительность средней высоты
5	Высокая растительность
6	Здание
7	Низкий шум
8	Ключевые для модели / Зарезервировано
9	Вода
10	Железная дорога
11	Дорожное покрытие

Значение классификации	Тип классификации
12	Наложение / Зарезервировано
13	Проволочная сетка
14	Провод
15	Опора ЛЭП
16	Изолятор
17	Мостовой настил
18	Высокий шум
19-63	Зарезервировано для Определения ASPRS (LAS от 1.1 до 1.3 поддерживают коды классов до 31)

При появлении новых кодов классов в LAS 1.4, которые ранее были зарезервированы, коды классов 8 и 12 были изменены с *Ключевые для модели* и *Наложение* на *Зарезервировано*.

Точки лазерного отражения от земной поверхности, координаты и атрибуты которых содержатся в файлах формата LAS в настоящей документации называются *пидарными точками*.

Для использования лидарных данных в системе необходимо их преобразование в матрицу высот.

Так же, при построении матрицы высот методом SGM, в системе *PHOTOMOD* предусмотрено создание файла облака точек формата LAS, аналогичного лидарным данным (см. раздел «Построение плотной матрицы высот методом SGM» руководства пользователя «Создание цифровой модели рельефа»).

Для работы с лидарными данными и облаками точек используется меню **ЦМР** > **LAS**.

Таблица 2. Краткое описание меню «LAS»

Пункты меню	Назначение
Загрузка LAS	позволяет открыть окно Загрузка лидарных данных для загрузки и отображения лидарных данных, нарезки лидарных данных на листы и преобразования лидарных данных в матрицу высот
Фильтрация LAS	позволяет выполнить фильтрацию LAS
Преобразование координат LAS-файлов	позволяет изменить систему координат LAS-файлов
Обрезка LAS-файлов по поли- гонам	позволяет выполнить обрезку облака точек по векторным полигонам

3. Окно «Загрузка лидарных данных»

Для преобразования лидарных данных в матрицу высот служит окно Загрузка лидарных данных.

Рис. 1. Окно «Загрузка лидарных данных»

Окно Загрузка лидарных данных содержит следующие элементы интерфейса:

- панель инструментов для загрузки, просмотра и подготовки лидарных данных для преобразования в матрицу высот;
- рабочую область со списком загруженных файлов;
- рабочую область для отображения лидарных точек; в левом нижнем углу направление осей системы координат загруженных лидарных данных.

Таблица 3. Панель инструментов окна «Загрузка лидарных данных»

Кнопки	Назначение
	позволяет открыть файл с лидарными данными в формате LAS
S	позволяет открыть файл с лидарными данными в формате LAS
×	позволяет закрыть выделенный файл с лидарными данными в формате LAS
**	позволяет закрыть все загруженные файлы с лидарными данными в формате LAS
87	позволяет перемещать рабочую область с мас- сивом лидарных данных в произвольном направ- лении

Кнопки	Назначение
*	позволяет перемещать рабочую область с массивом лидарных данных перпендикулярно плоскости экрана
	позволяет включить режим вращения массива лидарных данных в произвольном режиме
⊕(позволяет увеличить/уменьшить масштаб рабочей области
	позволяет задать масштаб рабочей области в рамках выделенного прямоугольника
<u>Q</u>	позволяет отобразить данные в масштабе 1:1
🗐, 🗐, 🗍, 🗍 и 🗊	позволяют осуществлять вращение массива лидарных данных
ω.	позволяет включить режим раскраски лидарных точек в соответствии со значениями их Z-координат
sad.	позволяет включить режим раскраски лидарных точек в черно-белом диапазоне (при наличии этих данных в файле формата LAS)
RGE.	позволяет включить режим раскраски лидарных точек в цветовой модели RGB (при наличии этих данных в файле формата LAS)
₩	позволяет включить режим раскраски лидарных точек в соответствии с порядковым номером отраженного импульса для каждой точки (при наличии этих данных в файле формата LAS)
3	позволяет включить режим раскраски лидарных точек в соответствии с количеством отраженных импульсов в каждой точке (при наличии этих данных в файле формата LAS)
.≅	позволяет включить режим раскраски лидарных точек в соответствии с направлением полета авиационного носителя при зондировании земной поверхности (при наличии этих данных в файле формата LAS)
	позволяет включить режим раскраски лидарных точек в соответствии с границами (при наличии этих данных в файле формата LAS)
	позволяет включить режим раскраски лидарных точек в соответствии с классификацией объектов (при наличии этих данных в файле формата LAS)
<u></u>	позволяет включить режим раскраски лидарных точек в соответствии с углом сканирования (при наличии этих данных в файле формата LAS)
3 {	позволяет создать листы из загруженных лидарных данных

Кнопки	Назначение
A.	позволяет включить режим отображения рамок листов нарезки (если созданы листы из загруженных лидарных данных)
	позволяет сохранить созданные листы нарезки в отдельных файлах формата LAS (если созданы листы из загруженных лидарных данных)
	позволяет преобразовать все открытые файлы с лидарными данными в <i>один файл</i> матрицы высот
	позволяет сохранить массив лидарных данных в виде цветного изображения

4. Загрузка и отображение лидарных данных

В системе предусмотрена возможность импорта лидарных данных как векторного слоя, (в виде пикетов). Подробнее см. в разделе «Импорт из LAS» руководства пользователя «Векторизация«.

Для загрузки и отображения лидарных данных в системе выполните следующие действия:

1. Выберите **ЦМР > LAS > Загрузка LAS...**. Открывается окно **Загрузка лидарных данных**.

Рис. 2. Окно «Загрузка лидарных данных»

2. Нажмите на кнопку Мили Митобы открыть файл лидарных данных. Выберите один или несколько файлов формата LAS и нажмите ОК.

Для управления отображением загруженных лидарных точек предусмотрены следующие возможности:

- для изменения масштаба отображения массива лидарных точек вращайте колесо мыши или используйте кнопки 🗞, 🔍, 🌉 и 💽;
- для вращения и поворота массива лидарных точек нажмите на кнопку 💋 и перемещайте мышь в рабочей области при нажатой левой кнопки мыши или используйте кнопки 🗐, 🗐, 🗐, 🗍 , 🗍 ;

Для просмотра данных предусмотрены следующие режимы раскраски лидарных точек:

- 🌉 режим раскраски по высоте;
- 🜄 режим раскраски в черно-белом диапазоне;

- — режим раскраски в цветовой модели RGB;
- режим раскраски в соответствии с порядковым номером отраженного импульса для каждой точки;
- <a>— режим раскраски в соответствии с количеством отраженных импульсов в каждой точке;
- 👼 режим раскраски в соответствии с направлением полета авиационного носителя при зондировании земной поверхности;
- 🌌 режим раскраски в соответствии с границами;
- режим раскраски в соответствии с классификацией объектов;
- 🌄 режим раскраски в соответствии с углом сканирования.

Для сохранения лидарных данных предусмотрены следующие возможности:

- для сохранения массива лидарных данных в виде цветного изображения служит кнопка 🔃:
- для сохранения созданных листов нарезки в отдельных файлах формата LAS служит кнопка :

Предварительно необходимо выполнить нарезку на листы.

5. Нарезка на листы

В системе предусмотрена возможность нарезки загруженных лидарных данных на листы для сохранения данных по частям в исходном формате или преобразования данных в матрицу высот.

Для нарезки лидарных данных на листы выполните следующие действия:

- 1. Нажмите на кнопку 📉 или 📆 чтобы открыть файл лидарных данных. Выберите один или несколько файлов формата LAS и нажмите ОК.
- 2. Выберите один или несколько файлов формата LAS и нажмите на кнопку **З** для настройки параметров нарезки на листы. Открывается окно **Параметры** нарезки.

Рис. 3. Окно «Параметры нарезки»

В окне отображаются значения границ области лидарных данных, в разделе Границы.

- 3. В разделе **Тип нарезки** выберите один из следующих вариантов нарезки на листы и задайте параметры нарезки:
 - По заданным размерам позволяет задать размер листа, на который делится вся область данных (в метрах);
 - По частям позволяет задать количество листов по осям X и Y;
 - По количеству точек позволяет задать максимальное число точек для каждого листа нарезки.
- 4. [опционально] Чтобы нарезка на листы происходила вдоль вытянутого края модели, установите флажок **Вдоль модели**.
- 5. Нажмите ОК. В окне **Загрузка лидарных данных** отображаются рамки листов нарезки для выбранного файла.

Для включения/отключения режима отображения рамок листов нарезки служит кнопка 🔏.

Рис. 4. Отображение рамок листов нарезки

- 6. Для сохранения листов нарезки в отдельных файлах формата LAS нажмите на кнопку 🕌 Открывается окно Сохранить как.
- 7. Задайте начальную часть имени и путь в ресурсах активного профиля и нажиите ОК. Для каждого листа создается файл, имя которого состоит из заданной начальной части, имени файла нарезанных лидарных данных и порядкового номера в соответствии с количеством листов нарезки.

6. Преобразование лидарных данных в матрицу высот

Для использования лидарных данных в системе необходимо выполнить их преобразование в матрицу высот.

Для преобразования лидарных данных в матрицу высот выполните следующие действия:

1. Загрузите лидарные данные.

- 3. Открывается окно **Параметры матрицы высот**. В окне отображаются границы, размер и вычисленное число ячеек для выходной матрицы высот.

Рис. 5. Окно «Параметры матрицы высот»

- 4. Задайте размер ячейки матрицы высот в метрах. При изменении параметра Размер ячейки матрицы высот выполняется автоматический пересчет числа ячеек.
- [опционально] Если система координат проекта отличается от системы координат лидарных данных, установите флажок Пересчитать СК. Задайте входную систему координат лидарных данных и выходную систему координат матрицы высот.
- Нажмите ОК. Запускается процесс преобразования лидарных данных в матрицу высот. После завершения процесса созданная матрица высот сохраняется в указанном файле.

7. Фильтрация LAS

Система позволяет выполнить фильтрацию лидарных данных и облаков точек, полученных при создании матриц высот методом SGM, по высоте и количеству отраженных импульсов в каждой точке, для исключения случайных выбросов.

При фильтрации случайных выбросов в облаке точек в системе предусмотрена возможность использования эталонной поверхности матрицы высот, созданной вместе с облаком точек LAS, или охватывающей ту же территорию (см. раздел «Построение плотной матрицы высот методом SGM» руководства пользователя «Создание цифровой модели рельефа»).

Для фильтрации лидарных данных/облака точек выполните следующие действия:

1. Выберите **ЦМР > LAS > Фильтрация LAS...**. Открывается окно **Фильтрация LAS**.

Рис. 6. Окно «Фильтрация LAS»

2. В разделе **Исходная папка с облаком точек (LAS)** задайте папку с лидарными данными/облаком точек в ресурсах активного профиля;

Процесс фильтрации будет запущен для всех файлов LAS находящихся в указанной папке (например для облака точек LAS, разбитого на тайлы).

3. В разделе **Выходная папка с облаком точек (LAS)** задайте папку для выходных данных в ресурсах активного профиля;

Исходная папка и **Выходная папка** не должны совпадать, иначе — выдается соответствующее информационное сообщение.

- 4. [опционально] установите флажок **Удалить точки выше** и настройте параметры фильтрации LAS по высоте:
 - Заданной высоты введите значение высоты в метрах (будут удалены все отсчеты, находящиеся выше заданной высоты);
 - **Матрицы высот** нажмите на кнопку ____ для того чтобы выбрать в ресурсах активного профиля матрицу высот в качестве эталонной поверхности. Введите значение допустимого превышения над поверхностью матрицы высот, в метрах (будут удалены все точки, находящиеся над поверхностью матрицы высот, за исключением не вышедших за пределы указанного допустимого превышения).

Слишком низкое или нулевое значение допустимого превышения может привести к удалению «хороших» точек и, как следствие, к «разреженности» облака точек.

Рекомендуемое значение — не менее СКО по Z в стереопарах (см. раздел «Краткий отчет об ошибках» руководства пользователя «Уравнивание сети»).

- 5. [опционально] установите флажок **Удалить точки ниже** и настройте параметры фильтрации LAS по высоте:
 - Заданной высоты введите значение высоты в метрах (будут удалены все отсчеты, находящиеся ниже заданной высоты);
 - **Матрицы высот** нажмите на кнопку ____ для того чтобы выбрать в ресурсах активного профиля матрицу высот в качестве эталонной поверхности. Введите значение допустимого отклонения от поверхности матрицы высот, в метрах (будут удалены все отсчеты ниже поверхности матрицы высот, за исключением не вышедших за пределы указанного допустимого отклонения).

Для корректной работы фильтра, в случае фильтрации отсчетов ниже поверхности матрицы высот, используемая в качестве эталонной поверхности матрица высот должна представлять собой цифровую модель рельефа, т. е. не включать в себя данные о строениях и растительности.

Для создания подобной эталонной матрицы высот рекомендуется использовать Φ ильтр строений и растительности или Φ ильтр по углу наклона (см. раздел «Фильтрация матрицы высот» руководства пользователя «Создание цифровой модели рельефа»).

Рекомендуемое значение — не менее СКО по Z в стереопарах (см. раздел «Краткий отчет об ошибках» руководства пользователя «Уравнивание сети»).

6. [опционально] установите флажок **Фильтрация по количеству отражений** для того чтобы настроить параметры фильтрации LAS в соответствии с количеством отраженных импульсов в каждой точке (при наличии этих данных в файле формата LAS);

В случае фильтрации *облака точек, созданного при построении матрицы высот методом SGM,* данный параметр имеет несколько иной смысл.

В данном случае, в файле LAS, под количеством отраженных импульсов в данной точке подразумевается количество стереопар, на основании которых была рассчитана та или иная точка: 1, 2, 3, 4, 5, 6, 7 или 8.

Ограничение «количества отраженных импульсов» от 1 до 8 проистекает из ограничений самого формата LAS, соответственно, в последнем случае, количество стереопар может подразумеваться и как «8», и как «8 и более».

Рекомендуется производить фильтрацию точек, рассчитанных на основе 2 и менее стереопар. Слишком строгие настройки фильтрации по количеству использованных стереопар могут привести к удалению «хороших» отсчетов и, как следствие, к «разреженности» облака точек (в следствии чего оно может не отображать часть объектов).

7. [опционально] установите флажок **Фильтрация по классификации** для того чтобы настроить параметры фильтрации LAS в соответствии с классификацией точек (см. таблицу в разделе 2);

Нажмите на кнопку **Выбрать слои**. Открывается окно **Параметры фильтра** классификации **LAS**:

Рис. 7. Окно «Параметры фильтра классификации LAS»

Для того чтобы убрать из результирующего файла LAS точки, классифицированные определенным образом, снимите соответствующие флажки. Для группового выбора типов точек в окне **Параметры фильтра классификации LAS** предусмотрены следующие кнопки:

- 📕 позволяет выбрать типы лидарных точек;
- 📑 позволяет отменить выбор всех типов лидарных точек;
- 🏥 позволяет инвертировать выбор типов точек;
- 8. Нажмите ОК. В результате в выходной папке будут созданы обработанные файлы LAS, с названиями, идентичными названиям файлов в исходной папке.

8. Преобразование системы координат LAS-файлов

В системе предусмотрена возможность преобразования LAS-файлов в другую систему координат.

Для преобразования LAS-файлов в другую систему координат выполните следующие действия:

1. Выберите **ЦМР > LAS > Преобразование координат LAS-файлов**. Открывается окно **Пересчет координат**.

Рис. 8. Преобразование LAS в другую систему координат

- 2. Нажмите на кнопку ____ в поле **Исходная папка с облаком точек (LAS)** и выберите исходную папку с облаком точек в ресурсах активного профиля.
- 3. Нажмите на кнопку ____ в поле **Выходная папка с облаком точек (LAS)** и выберите папку для выходных файлов облака точек в ресурсах активного профиля.
- 4. В разделе **Исходная система координат** выберите реальную систему координат облака точек (если она отличается от СК проекта). Для этого выполните следующие действия:
 - Нажмите на кнопку Выбрать..., чтобы задать исходную систему координат.
 Система координат задается одним из следующих способов:
 - **Из БД** из международной и российской баз данных систем координат (см. *«Базы данных систем координат»* в руководстве пользователя «Создание проекта»);
 - \frac{1}{3}

Пункты меню **Из БД** — **UTM**, **CK-42** и **CK-95** предназначены для быстрого доступа к соответствующим системам координат, минуя общие списки международной и российской баз данных.

- **Из файла** позволяет выбрать систему координат из файлов с расширением *.x-ref-system, размещенных вне ресурсов активного профиля;
- **Из ресурса** из файлов с расширением *.x-ref-system, размещенных в ресурсах активного профиля, например, для выбора системы координат из другого проекта активного профиля.
- Также в системе предусмотрена возможность выбора системы координат из списка последних использованных систем координат.
- 2) [опционально] При выборе системы координат из баз данных открывается окно База систем координат со списком систем координат.
 - Для быстрого поиска системы координат введите частично или полностью название системы координат в поле ввода **Поиск**.

Рис. 9. Окно выбора системы координат из базы систем координат

- 3) [опционально] Чтобы выбрать используемый геоид, нажмите на кнопку Выберите один из видов использования геоида:
 - Без геоида;
 - EGM 96.

В системе существует возможность использования геоида EGM2008. Подробнее см. в руководстве пользователя «Поддержка геоида EGM2008«. После установки геоид отображается в списке.

- 5. В разделе **Выходная система координат** укажите систему координат в которую необходимо преобразовать облако точек. Для этого выполните действия пункта **4**.
- 6. Нажмите ОК для запуска процесса изменения системы координат облака точек.

Чтобы использовать распределенные вычисления при изменении системы координат облака точек выполните следующие действия:

- 1) Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку **Распределенная обработка...**. Создаются задачи распределенной обработки. Количество созданных задач соответствует количеству LAS-файлов.

9. Обрезка облака точек по полигонам

В системе предусмотрена возможность редактирования области покрытия облака точек.

Для того чтобы скорректировать размер облака точек, выполните следующие действия:

1. Создайте векторный слой и полигоны в нем, либо откройте слой с граничными полигонами (см. руководство пользователя «Векторизация»).

Если полигоны, используемые в качестве границ, не имеют атрибутов, то, перед обрезкой облака точек, создайте текстовые атрибуты для данных полигонов и сохраните векторный слой (см. руководство пользователя «Векторизация»).

Имена папок, содержащих выходные LAS-файлы, а так же имена самих выходных LAS-файлов задаются автоматически, из значений атрибутов векторных полигонов, используемых в качестве границ для обрезки.

2. Выберите **ЦМР > LAS > Обрезка LAS-файлов по полигонам...**. Открывается окно **Обрезка LAS-файлов полигонами**.

Рис. 10. Параметры обрезки по полигонам

3. В разделе **Исходные данные** нажмите на кнопку ____ в поле **Исходная папка с облаком точек (LAS)** для выбора папки с исходными LAS-файлами в ресурсах активного профиля.

- 4. [опционально] Чтобы указать **Проект с предыдущим уравниванием** в ресурсах активного профиля, нажмите на кнопку ____ в поле **Проект с предыдущим уравниванием**.
 - Это может быть необходимо, в случае, если проект (или его копия), был переуравнен после создания LAS-файла.
- 5. Чтобы указать векторный слой с полигонами, использующимися в качестве границ (см. п. 1) в ресурсах активного профиля, нажмите на кнопку ____ в поле **Ресурс с полигонами**.
- 6. В поле **Имя атрибута** введите **Имя атрибута** полигонов, использующихся в качестве границ;
- 7. В разделе **Выходные данные** нажмите на кнопку ____ в поле **Выходная** папка с облаком точек (LAS) для выбора папки которая будет содержать выходные папки и LAS-файлы в ресурсах активного профиля.
- 8. Нажмите ОК.

Для редактирования облака точек в режиме распределенной обработки выполните следующие действия:

- 1. Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- 2. Нажмите на кнопку **Распределенная обработка**. Создаются задачи распределенной обработки. Количество задач соответствует количеству LASфайлов.