

Обработка лидарных данных

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Версия 6.4

Цифровая фотограмметрическая система

Оглавление

1.	О документе	. 3
2.	Использование лидарных данных в системе	. 3
3.	Окно «Загрузка лидарных данных»	. 5
4.	Загрузка и отображение лидарных данных	. 7
5.	Нарезка на листы	. 9
6.	Преобразование лидарных данных в матрицу высот	11
7.	Фильтрация LAS	13
8.	Преобразование системы координат LAS-файлов	16
9.	Обрезка облака точек по полигонам	19

1. О документе

Настоящий документ предназначен для ознакомления с процессом обработки лидарных данных и облаков точек для использования в системе *PHOTOMOD* и содержит описание загрузки, режимов просмотра и обработки лидарных данных.

2. Использование лидарных данных в системе

В системе предусмотрена возможность загрузки лидарных данных, преобразования этих данных в матрицу высот и сохранение матрицы в ресурсах активного профиля.

Лидар (LIDAR англ. Light Detection And Ranging) — технология получения и обработки информации об удаленных объектах с помощью активных оптических систем, использующих явления отражения света и его рассеивания в прозрачных и полупрозрачных средах. Полученные данные называют *лидарными данными*.

Лидарные данные поставляются в файлах формата LAS, которые содержат координаты XYZ точек лазерного отражения и их атрибуты (порядковый номер отраженного импульса, общее количество отраженных импульсов в точке, данные классификации объектов).

В системе поддерживается использование файлов формата LAS независимо от способа получения данных.

В системе поддерживается использование файлов LAS с форматами хранения точечных объектов с 0 до 2. При попытке импорта файлов в формате большем 2 выдается сообщение об ошибке.

Формат LAS поддерживает классификацию точек на основе спецификаций, разработанных обществом American Society for Photogrammetry and Remote Sensing (ASPRS). Ниже приведена, предназначенная для LAS-файлов версии 1.4:

Значение классификации	Тип классификации		
0	Классификация не выполнялась		
1	Не присвоено		
2	Земля		
3	Низкорослая растительность		
4	Растительность средней высоты		
5	Высокая растительность		
6	Здание		
7	Низкий шум		
8	Ключевые для модели / Зарезервировано		
9	Вода		
10	Железная дорога		
11	Дорожное покрытие		

Значение классификации	Тип классификации
12	Наложение / Зарезервировано
13	Проволочная сетка
14	Провод
15	Опора ЛЭП
16	Изолятор
17	Мостовой настил
18	Высокий шум
19-63	Зарезервировано для Определения ASPRS (LAS от 1.1 до 1.3 поддерживают коды классов до 31)

 $\mathcal{N}_{\overline{A}}$

При появлении новых кодов классов в LAS 1.4, которые ранее были зарезервированы, коды классов 8 и 12 были изменены с *Ключевые для модели* и *Наложение* на *Зарезервировано*.

Точки лазерного отражения от земной поверхности, координаты и атрибуты которых содержатся в файлах формата LAS в настоящей документации называются *ли- дарными точками*.

Для использования лидарных данных в системе необходимо их преобразование в матрицу высот.

Так же, при построении матрицы высот методом SGM, в системе *PHOTOMOD* предусмотрено создание файла облака точек формата LAS, аналогичного лидарным данным (см. раздел «Построение плотной матрицы высот методом SGM» руководства пользователя «Создание цифровой модели рельефа»).

Для работы с лидарными данными и облаками точек используется меню **ЦМР > LAS**.

Пункты меню	Назначение
Загрузка LAS	позволяет открыть окно Загрузка лидарных данных для загруз- ки и отображения лидарных данных, нарезки лидарных данных на листы и преобразования лидарных данных в матрицу высот
Фильтрация LAS	позволяет выполнить фильтрацию LAS
Преобразование координат LAS-файлов	позволяет изменить систему координат LAS-файлов
Обрезка LAS-файлов по поли- гонам	позволяет выполнить обрезку облака точек по векторным полигонам

Таблица 2. Кра	аткое описание	меню	«LAS»
----------------	----------------	------	-------

3. Окно «Загрузка лидарных данных»

Для преобразования лидарных данных в матрицу высот служит окно Загрузка лидарных данных.

Рис. 1. Окно «Загрузка лидарных данных»

Окно Загрузка лидарных данных содержит следующие элементы интерфейса:

- панель инструментов для загрузки, просмотра и подготовки лидарных данных для преобразования в матрицу высот;
- рабочую область со списком загруженных файлов;
- рабочую область для отображения лидарных точек; в левом нижнем углу направление осей системы координат загруженных лидарных данных.

Кнопки	Назначение
	позволяет открыть файл с лидарными данными в формате LAS
X	позволяет открыть файл с лидарными данными в формате LAS
×	позволяет закрыть выделенный файл с лидарны- ми данными в формате LAS
**	позволяет закрыть все загруженные файлы с лидарными данными в формате LAS
۳ ₂	позволяет перемещать рабочую область с мас- сивом лидарных данных в произвольном направ- лении

Таблица 3. Панель инструментов окна «Загрузка лидарных данных»

Кнопки	Назначение
8	позволяет перемещать рабочую область с мас- сивом лидарных данных перпендикулярно плоскости экрана
2	позволяет включить режим вращения массива лидарных данных в произвольном режиме
€.	позволяет увеличить/уменьшить масштаб рабо- чей области
	позволяет задать масштаб рабочей области в рамках выделенного прямоугольника
	позволяет отобразить данные в масштабе 1:1
🗊, 🗊, 🗊, 🗊 и 🗊	позволяют осуществлять вращение массива лидарных данных
<u>ad</u>	позволяет включить режим раскраски лидарных точек в соответствии со значениями их Z-координат
	позволяет включить режим раскраски лидарных точек в черно-белом диапазоне (при наличии этих данных в файле формата LAS)
RCE	позволяет включить режим раскраски лидарных точек в цветовой модели RGB (при наличии этих данных в файле формата LAS)
	позволяет включить режим раскраски лидарных точек в соответствии с порядковым номером отраженного импульса для каждой точки (при наличии этих данных в файле формата LAS)
	позволяет включить режим раскраски лидарных точек в соответствии с количеством отраженных импульсов в каждой точке (при наличии этих данных в файле формата LAS)
	позволяет включить режим раскраски лидарных точек в соответствии с направлением полета авиационного носителя при зондировании зем- ной поверхности (при наличии этих данных в файле формата LAS)
	позволяет включить режим раскраски лидарных точек в соответствии с границами (при наличии этих данных в файле формата LAS)
	позволяет включить режим раскраски лидарных точек в соответствии с классификацией объектов (при наличии этих данных в файле формата LAS)
	позволяет включить режим раскраски лидарных точек в соответствии с углом сканирования (при наличии этих данных в файле формата LAS)
38	позволяет создать листы из загруженных лидар- ных данных

Кнопки	Назначение
and a state of the	позволяет включить режим отображения рамок листов нарезки (если созданы листы из загружен- ных лидарных данных)
	позволяет сохранить созданные листы нарезки в отдельных файлах формата LAS (если созданы листы из загруженных лидарных данных)
	позволяет преобразовать все открытые файлы с лидарными данными в <i>один файл</i> матрицы высот
	позволяет сохранить массив лидарных данных в виде цветного изображения

4. Загрузка и отображение лидарных данных

Л В системе предусмотрена возможность импорта лидарных данных как векторного слоя, (в виде пикетов). Подробнее см. в разделе «Импорт из LAS» руководства пользователя «Векторизация«.

Для загрузки и отображения лидарных данных в системе выполните следующие действия:

1. Выберите **ЦМР > LAS > Загрузка LAS...** Открывается окно **Загрузка лидарных данных**.

Рис. 2. Окно «Загрузка лидарных данных»

2. Нажмите на кнопку 🚰 или 🚰 чтобы открыть файл лидарных данных. Выберите один или несколько файлов формата LAS и нажмите OK.

Для управления отображением загруженных лидарных точек предусмотрены следующие возможности:

- для изменения масштаба отображения массива лидарных точек вращайте колесо мыши или используйте кнопки 🗞, 🔍, 🎕 и 🖳;

Для просмотра данных предусмотрены следующие режимы раскраски лидарных точек:

- 📈 режим раскраски по высоте;
- 🔜 режим раскраски в черно-белом диапазоне;

- 🎇 режим раскраски в цветовой модели RGB;
- 💹 режим раскраски в соответствии с порядковым номером отраженного импульса для каждой точки;
- 💹 режим раскраски в соответствии с количеством отраженных импульсов в каждой точке;
- 👼 режим раскраски в соответствии с направлением полета авиационного носителя при зондировании земной поверхности;
- 📓 режим раскраски в соответствии с границами;
- 🜄 режим раскраски в соответствии с классификацией объектов;
- 💫 режим раскраски в соответствии с углом сканирования.

Для сохранения лидарных данных предусмотрены следующие возможности:

- для сохранения массива лидарных данных в виде цветного изображения служит кнопка 📓 ;
- для сохранения созданных листов нарезки в отдельных файлах формата LAS служит кнопка

Предварительно необходимо выполнить нарезку на листы.

5. Нарезка на листы

В системе предусмотрена возможность нарезки загруженных лидарных данных на листы для сохранения данных по частям в исходном формате или преобразования данных в матрицу высот.

Для нарезки лидарных данных на листы выполните следующие действия:

- 1. Нажмите на кнопку 🚰 или 🚰 чтобы открыть файл лидарных данных. Выберите один или несколько файлов формата LAS и нажмите OK.
- Выберите один или несколько файлов формата LAS и нажмите на кнопку для настройки параметров нарезки на листы. Открывается окно Параметры нарезки.

Границы							
	Сев	ер	381043	м			
Запад 6.23234е+0	06 м			Восток	6	.23829e+006	м
	H	Ог	375647	м			
Тип нарезки							
💿 По заданным раз	вмерам	Х	1	м	Y	1	м
🔘 По частям		Х	1		Y	1	
🔿 По количеству то	очек		Максимально число точек в файле нарезк	ре 3 И		1000000	
			Общее число	точек		2840865	
🔲 Вдоль модели							

Рис. 3. Окно «Параметры нарезки»

В окне отображаются значения границ области лидарных данных, в разделе Границы.

- 3. В разделе **Тип нарезки** выберите один из следующих вариантов нарезки на листы и задайте параметры нарезки:
 - По заданным размерам позволяет задать размер листа, на который делится вся область данных (в метрах);
 - По частям позволяет задать количество листов по осям Х и У;
 - По количеству точек позволяет задать максимальное число точек для каждого листа нарезки.
- 4. [опционально] Чтобы нарезка на листы происходила вдоль вытянутого края модели, установите флажок **Вдоль модели**.
- 5. Нажмите ОК. В окне Загрузка лидарных данных отображаются рамки листов нарезки для выбранного файла.

Для включения/отключения режима отображения рамок листов нарезки служит кнопка 💦

Рис. 4. Отображение рамок листов нарезки

- 6. Для сохранения листов нарезки в отдельных файлах формата LAS нажмите на кнопку 📲. Открывается окно Сохранить как.
- Задайте начальную часть имени и путь в ресурсах активного профиля и нажмите ОК. Для каждого листа создается файл, имя которого состоит из заданной начальной части, имени файла нарезанных лидарных данных и порядкового номера в соответствии с количеством листов нарезки.

6. Преобразование лидарных данных в матрицу высот

Для использования лидарных данных в системе необходимо выполнить их преобразование в матрицу высот.

Для преобразования лидарных данных в матрицу высот выполните следующие действия:

1. Загрузите лидарные данные.

- Нажмите на кнопку . Открывается окно Сохранить. Задайте имя и путь для сохранения матрицы высот в ресурсах активного профиля. Нажмите Сохранить.
- 3. Открывается окно **Параметры матрицы высот**. В окне отображаются границы, размер и вычисленное число ячеек для выходной матрицы высот.

😎 Параметры матрицы высот	×
Границы	
Север 381042.690000	м
Запад 6232341.170000 м	Восток 6238292.700000 м
Юr 375646.570000	м
Ширина 5951.530000 м	
Высота 5396.120000 м	
Размер ячейки	
	X 5952
Размер ячейки матрицы высот 1.000000 м	Число ячеек Y 5397
🗐 Пересчитать СК	
Исходная система координат	
СК-42, зона 43 (108° з.д102° з.д.)	Выбрать
Ориентация осей: левая тройка, геод. привязка: глобальна	я система координат
Выходная система координат	
СК-42, зона 43 (108° з.д102° з.д.)	Выбрать
Ориентация осей: левая тройка, геод. привязка: глобальна	я система координат
	ОК Отмена

Рис. 5. Окно «Параметры матрицы высот»

- 4. Задайте размер ячейки матрицы высот в метрах. При изменении параметра Размер ячейки матрицы высот выполняется автоматический пересчет числа ячеек.
- [опционально] Если система координат проекта отличается от системы координат лидарных данных, установите флажок Пересчитать СК. Задайте входную систему координат лидарных данных и выходную систему координат матрицы высот.
- Нажмите ОК. Запускается процесс преобразования лидарных данных в матрицу высот. После завершения процесса созданная матрица высот сохраняется в указанном файле.

7. Фильтрация LAS

Система позволяет выполнить фильтрацию лидарных данных и облаков точек, полученных при создании матриц высот методом SGM, по высоте и количеству отраженных импульсов в каждой точке, для исключения случайных выбросов.

При фильтрации случайных выбросов в облаке точек в системе предусмотрена возможность использования эталонной поверхности матрицы высот, созданной вместе с облаком точек LAS, или охватывающей ту же территорию (см. раздел «Построение плотной матрицы высот методом SGM» руководства пользователя «Создание цифровой модели рельефа»).

Для фильтрации лидарных данных/облака точек выполните следующие действия:

1. Выберите **ЦМР > LAS > Фильтрация LAS...** Открывается окно **Фильтрация LAS**.

😎 Фильтрация LAS	×
🔲 Удалить точки выш	e:
Заданной высоты	0.0 m
🔘 матрицы высот	0.0 × m
🔲 Удалить точки ниже	2
заданной высоты	0.0 m
🔘 матрицы высот	0.0 A m
🔲 Фильтрация по кол	ичеству отражений
от 1	до 8 х
🔲 Фильтрация по клас	ссификации Выбрать слои
Исходная папка с обл	аком точек (LAS)
Выходная папка с обл	аком точек (LAS)
	ОК Отмена

Рис. 6. Окно «Фильтрация LAS»

2. В разделе Исходная папка с облаком точек (LAS) задайте папку с лидарными данными/облаком точек в ресурсах активного профиля;

Процесс фильтрации будет запущен для всех файлов LAS находящихся в указанной папке (например для облака точек LAS, разбитого на тайлы).

3. В разделе **Выходная папка с облаком точек (LAS)** задайте папку для выходных данных в ресурсах активного профиля;

Исходная папка и **Выходная папка** не должны совпадать, иначе — выдается соответствующее информационное сообщение.

- 4. [опционально] установите флажок **Удалить точки выше** и настройте параметры фильтрации LAS по высоте:
 - Заданной высоты введите значение высоты в метрах (будут удалены все отсчеты, находящиеся выше заданной высоты);
 - Матрицы высот нажмите на кнопку ____ для того чтобы выбрать в ресурсах активного профиля матрицу высот в качестве эталонной поверхности. Введите значение допустимого превышения над поверхностью матрицы высот, в метрах (будут удалены все точки, находящиеся над поверхностью матрицы высот, за исключением не вышедших за пределы указанного допустимого превышения).
 - Слишком низкое или нулевое значение допустимого превышения может привести к удалению «хороших» точек и, как следствие, к «разреженности» облака точек.

Рекомендуемое значение — не менее СКО по Z в стереопарах (см. раздел «Краткий отчет об ошибках» руководства пользователя «Уравнивание сети»).

- 5. [опционально] установите флажок **Удалить точки ниже** и настройте параметры фильтрации LAS по высоте:
 - Заданной высоты введите значение высоты в метрах (будут удалены все отсчеты, находящиеся ниже заданной высоты);
 - Матрицы высот нажмите на кнопку ____ для того чтобы выбрать в ресурсах активного профиля матрицу высот в качестве эталонной поверхности. Введите значение допустимого отклонения от поверхности матрицы высот, в метрах (будут удалены все отсчеты ниже поверхности матрицы высот, за исключением не вышедших за пределы указанного допустимого отклонения).
 - Для корректной работы фильтра, в случае фильтрации отсчетов ниже поверхности матрицы высот, используемая в качестве эталонной поверхности матрица высот должна представлять собой цифровую модель рельефа, т. е. не включать в себя данные о строениях и растительности.

Для создания подобной эталонной матрицы высот рекомендуется использовать Фильтр строений и растительности или Фильтр по углу наклона (см. раздел «Фильтрация матрицы высот» руководства пользователя «Создание цифровой модели рельефа»).

Рекомендуемое значение — не менее СКО по Z в стереопарах (см. раздел «Краткий отчет об ошибках» руководства пользователя «Уравнивание сети»).

- [опционально] установите флажок Фильтрация по количеству отражений для того чтобы настроить параметры фильтрации LAS в соответствии с количеством отраженных импульсов в каждой точке (при наличии этих данных в файле формата LAS);
 - В случае фильтрации облака точек, созданного при построении матрицы высот методом SGM, данный параметр имеет несколько иной смысл.

В данном случае, в файле LAS, под количеством отраженных импульсов в данной точке подразумевается количество стереопар, на основании которых была рассчитана та или иная точка: 1, 2, 3, 4, 5, 6, 7 или 8.

Ограничение «количества отраженных импульсов» от 1 до 8 проистекает из ограничений самого формата LAS, соответственно, в последнем случае, количество стереопар может подразумеваться и как «8», и как «8 и более».

Рекомендуется производить фильтрацию точек, рассчитанных на основе 2 и менее стереопар. Слишком строгие настройки фильтрации по количеству использованных стереопар могут привести к удалению «хороших» отсчетов и, как следствие, к «разреженности» облака точек (в следствии чего оно может не отображать часть объектов).

 [опционально] установите флажок Фильтрация по классификации для того чтобы настроить параметры фильтрации LAS в соответствии с классификацией точек (см. таблицу в разделе 2);

Нажмите на кнопку Выбрать слои. Открывается окно Параметры фильтра классификации LAS:

😎 Параметры фильтра классификации LAS 🛛 🔯
Классификация не выполнялась
📝 Не присвоено
📝 Земля
🗹 Низкорослая растительность
Растительность средней высоты
🖉 Высокая растительность
🔽 Здание
📝 Низкая точка (шум)
📝 Ключевая точка модели (массовая точка)
📝 Вода
📝 Зарезервирована на будущее
📝 Зарезервирована на будущее
🖉 Точки перекрытия
ОК Отмена

Рис. 7. Окно «Параметры фильтра классификации LAS»

Для того чтобы убрать из результирующего файла LAS точки, классифицированные определенным образом, снимите соответствующие флажки. Для группового выбора типов точек в окне **Параметры фильтра классификации** LAS предусмотрены следующие кнопки:

- 📰 позволяет выбрать типы лидарных точек;
- 📑 позволяет отменить выбор всех типов лидарных точек;
- 🔢 позволяет инвертировать выбор типов точек;
- 8. Нажмите ОК. В результате в выходной папке будут созданы обработанные файлы LAS, с названиями, идентичными названиям файлов в исходной папке.

8. Преобразование системы координат LAS-файлов

В системе предусмотрена возможность преобразования LAS-файлов в другую систему координат.

Для преобразования LAS-файлов в другую систему координат выполните следующие действия:

1. Выберите **ЦМР > LAS > Преобразование координат LAS-файлов**. Открывается окно **Пересчет координат**.

😎 Пересчет координат	×				
Исходная папка с облаком точек (LAS)					
/TK-350_TEST/test dima/Data/					
Выходная папка с облаком точек (LAS)					
/TK-350_TEST/test dima/Data/					
Исходная система координат					
Декартова правая (Декартова правая локальная система коорд Выбрать					
Ориентация осей: правая тройка, геод. привязка: локальная (условная) система коорд					
Выходная система координат					
Декартова правая (Декартова правая локальная система коорд Выбрать					
Ориентация осей: правая тройка, геод. привязка: локальная (условная) система коорд					
ОК Распределенная обработка	Отмена				

Рис. 8. Преобразование LAS в другую систему координат

- 2. Нажмите на кнопку ____ в поле Исходная папка с облаком точек (LAS) и выберите исходную папку с облаком точек в ресурсах активного профиля.
- 3. Нажмите на кнопку ... в поле Выходная папка с облаком точек (LAS) и выберите папку для выходных файлов облака точек в ресурсах активного профиля.
- В разделе Исходная система координат выберите реальную систему координат облака точек (если она отличается от СК проекта). Для этого выполните следующие действия:
 - 1) Нажмите на кнопку Выбрать..., чтобы задать исходную систему координат.

Система координат задается одним из следующих способов:

- Из БД из международной и российской баз данных систем координат (см. «Базы данных систем координат» в руководстве пользователя «Создание проекта»);
 - Л Пункты меню Из БД UTM, СК-42 и СК-95 предназначены для быстрого доступа к соответствующим системам координат, минуя общие списки международной и российской баз данных.
- Из файла позволяет выбрать систему координат из файлов с расширением *.x-ref-system, размещенных вне ресурсов активного профиля;
- Из ресурса из файлов с расширением *.x-ref-system, размещенных в ресурсах активного профиля, например, для выбора системы координат из другого проекта активного профиля.

Также в системе предусмотрена возможность выбора системы координат из списка последних использованных систем координат.

2) [опционально] При выборе системы координат из баз данных открывается окно База систем координат со списком систем координат.

Для быстрого поиска системы координат введите частично или полностью название системы координат в поле ввода **Поиск**.

😎 База	систем координат international		×
Поиск	I	×	
N♀	Название	Примечание	
1	Cartesian Left	Left Cartesian reference system	
2	Cartesian Right	Local right Cartesian reference system	
3	Local Curved Left	Local left Cartesian reference system which takes into account Earth curvature	
4	Local Curved Right	Local right Cartesian reference system which takes into account Earth curvature	
5	Abidjan 1987 / UTM zone 29N	Cote D'Ivoire (Ivory Coast) west of 6 deg West. IGN Paris EPSG Supersedes Locodjo 65 / UTM 29N (EPSG code 242).	
6	Abidjan 1987 / UTM zone 30N	Cote D'Ivoire (Ivory Coast) east of 6 deg West. IGN Paris EPSG Supersedes Locodjo 65 / UTM 30N (EPSG code 240).	
7	Abidjan 1987	Cote D'Ivoire (Ivory Coast). IGN Paris EPSG Supersedes Locodjo 1967 (EPSG code 4142).	
8	Adindan / UTM zone 37N	Ethiopia - west of 42 degrees East. Sudan - west of 42 degrees East. EPSG	
9	Adindan / UTM zone 38N	Ethiopia - east of 42 degrees East,Sudan - east of 42 degrees East,EPSG	
10	Adindan	Ethiopia; Sudan EPSG	
11	Afgooye / UTM zone 38N	Somalia - west of 48 degrees East. EPSG	
12	Afgooye / UTM zone 39N	Somalia - east of 48 degrees East. EPSG	
13	Afgooye	Somalia EPSG	
14	Agadez	Niger EPSG	
15	AGD66 / AMG zone 48	Australia - 102deg East to 108deg East. EPSG	
16	AGD66 / AMG zone 49	Australia - 108deg East to 114deg East. EPSG	-
		ОК Отмена	

Рис. 9. Окно выбора системы координат из базы систем координат

- [опционально] Чтобы выбрать используемый геоид, нажмите на кнопку
 Выберите один из видов использования геоида:
 - Без геоида;
 - EGM 96.

В системе существует возможность использования геоида EGM2008. Подробнее см. в руководстве пользователя «Поддержка геоида EGM2008«. После установки геоид отображается в списке.

Система координат				
WGS 84 / UTM zone 35N (24dec	East to 30deg East; northern he	emisphere. Belarus. Bulgaria. ⊂	Выбрать	-
Ориентация осей: правая тройка, геод, привозка: гообальная система координат				
Tophorna and ocontribabasi the	nitaj reegri i pribliotat riteation	алененона координат		EGM 2008
F 0				EGM 96
Высота местности	min j m	max j m		

- 5. В разделе **Выходная система координат** укажите систему координат в которую необходимо преобразовать облако точек. Для этого выполните действия пункта **4**.
- 6. Нажмите ОК для запуска процесса изменения системы координат облака точек.

Чтобы использовать распределенные вычисления при изменении системы координат облака точек выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- Нажмите на кнопку Распределенная обработка.... Создаются задачи распределенной обработки. Количество созданных задач соответствует количеству LAS-файлов.

9. Обрезка облака точек по полигонам

В системе предусмотрена возможность редактирования области покрытия облака точек.

Для того чтобы скорректировать размер облака точек, выполните следующие действия:

1. Создайте векторный слой и полигоны в нем, либо откройте слой с граничными полигонами (см. руководство пользователя «Векторизация»).

Если полигоны, используемые в качестве границ, не имеют атрибутов, то, перед обрезкой облака точек, создайте текстовые атрибуты для данных полигонов и сохраните векторный слой (см. руководство пользователя «Векторизация»).

Имена папок, содержащих выходные LAS-файлы, а так же имена самих выходных LAS-файлов задаются автоматически, из значений атрибутов векторных полигонов, используемых в качестве границ для обрезки.

2. Выберите **ЦМР > LAS > Обрезка LAS-файлов по полигонам...** Открывается окно **Обрезка LAS-файлов полигонами**.

👽 Обрезка LAS-файлов полигонами	×
Исходные данные	
Исходная папка с облаком точек (LAS)	
/Antwerp/Antwerp/Data/dem/DSM_22cm/LAS	
Проект с предыдущим уравниванием	
/Antwerp/Antwerp	
Ресурс с полигонами	
/Antwerp/Antwerp/Data/Векторыlas.x-data	
Имя атрибута	
Label	
Выходные данные	
Выходная папка с облаком точек (LAS)	
/Antwerp/Antwerp/Data/dem/DSM_22cm/LAS2	
ОК Распределенная обработка	Отмена

Рис. 10. Параметры обрезки по полигонам

3. В разделе Исходные данные нажмите на кнопку ____ в поле Исходная папка с облаком точек (LAS) для выбора папки с исходными LAS-файлами в ресурсах активного профиля.

4. [опционально] Чтобы указать **Проект с предыдущим уравниванием** в ресурсах активного профиля, нажмите на кнопку _____ в поле **Проект с предыдущим** уравниванием.

Это может быть необходимо, в случае, если проект (или его копия), был переуравнен после создания LAS-файла.

- 5. Чтобы указать векторный слой с полигонами, использующимися в качестве границ (см. п. 1) в ресурсах активного профиля, нажмите на кнопку ____ в поле **Ресурс с полигонами**.
- 6. В поле **Имя атрибута** введите **Имя атрибута** полигонов, использующихся в качестве границ;
- 7. В разделе Выходные данные нажмите на кнопку ____ в поле Выходная папка с облаком точек (LAS) для выбора папки которая будет содержать выходные папки и LAS-файлы в ресурсах активного профиля.
- 8. Нажмите ОК.

Для редактирования облака точек в режиме распределенной обработки выполните следующие действия:

- 1. Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- Нажмите на кнопку Распределенная обработка. Создаются задачи распределенной обработки. Количество задач соответствует количеству LASфайлов.