

Создание цифровой модели рельефа

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Версия 6.4

Цифровая фотограмметрическая система

Оглавление

1. Назначение документа	5
2. Создание цифровой модели рельефа	5
3. Регулярная сетка узлов	6
3.1. Создание сетки	6
3.2. Параметры сетки	8
4. Пикеты	9
4.1. Меню «Пикеты»	10
4.2. Создание пикетов	11
4.2.1. Режимы и способы создания пикетов	11
4.2.2. Панель инструментов «Режим профилирования»	11
4.2.3. Создание пикетов в режиме профилирования	12
4.2.4. Параметры режима профилирования	14
4.3. Автоматический расчет пикетов	16
4.3.1. Выполнение автоматического расчета пикетов	16
4.3.2. Конфигурации коррелятора	23
4.3.3. Настройка конфигурации коррелятора	25
4.3.4. Дополнительные параметры коррелятора	29
4.3.5. Параметры расчета первого приближения	30
4.3.6. Расчет пикетов в режиме распределенной обработки	31
4.4. Редактирование пикетов	33
4.5. Фильтрация пикетов	35
4.5.1. Прореживание пикетов	36
4.5.2. Фильтр пикетов по диапазону высот	36
4.5.3. Медианный фильтр пикетов по высоте	37
4.5.4. Фильтр близлежащих точечных объектов	38
4.5.5. Фильтр строений и растительности	39
	·
4.5.6. Фильтр объектов на поверхности	47
4.5.6. Фильтр объектов на поверхности 4.5.7. Фильтр по характеристикам изображения	47 48
 4.5.6. Фильтр объектов на поверхности	47 48 52
 4.5.6. Фильтр объектов на поверхности	47 48 52 52
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53 55
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53 55 55
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53 55 55 58
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53 55 55 58 62
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53 55 55 58 62 63
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53 55 55 58 62 63 63
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53 55 55 58 62 63 65 67
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 53 55 55 55 62 63 65 67 68
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 55 55 55 62 63 65 67 68 69
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 55 55 55 58 62 63 65 67 68 69 72
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 55 55 55 62 63 65 67 68 69 72 72
 4.5.6. Фильтр объектов на поверхности 4.5.7. Фильтр по характеристикам изображения 5. Нерегулярная пространственная сеть треугольников (TIN) 5.1. Меню «TIN» 5.2. Общие сведения 5.3. Создание TIN 5.3.1. Построение разметки блока 5.3.2. Загрузка базовых слоев для создания TIN 5.3.3. Построение границ TIN 5.3.4. Построение траниц TIN 5.5. Загрузка TIN 5.6. Сохранение TIN 5.7. Восстановление TIN 5.8. Информация о TIN 5.8.1. Краткая информация о TIN 5.8.2. Общая информация о TIN 	47 48 52 52 53 55 55 58 62 63 65 67 68 69 72 72 73
 4.5.6. Фильтр объектов на поверхности 4.5.7. Фильтр по характеристикам изображения 5. Нерегулярная пространственная сеть треугольников (TIN) 5.1. Меню «TIN» 5.2. Общие сведения 5.3. Создание TIN 5.3.1. Построение разметки блока 5.3.2. Загрузка базовых слоев для создания TIN 5.3.4. Построение границ TIN 5.3.4. Построение тIN 5.5. Загрузка TIN 5.6. Сохранение TIN 5.7. Восстановление TIN 5.8.1. Краткая информация о TIN 5.8.2. Общая информация о TIN 5.8.3. Информация о площади TIN 	47 48 52 52 55 55 55 62 63 65 67 68 69 72 73 73 74
 4.5.6. Фильтр объектов на поверхности	47 48 52 52 55 55 55 62 63 65 67 68 69 72 73 74 74 74
 4.5.6. Фильтр объектов на поверхности	$\begin{array}{c} 47 \\ 48 \\ 52 \\ 52 \\ 53 \\ 55 \\ 55 \\ 58 \\ 62 \\ 63 \\ 63 \\ 64 \\ 64 \\ 64 \\ 72 \\ 72 \\ 72 \\ 74 \\ 7$
 4.5.6. Фильтр объектов на поверхности 4.5.7. Фильтр по характеристикам изображения 5. Нерегулярная пространственная сеть треугольников (TIN) 5.1. Меню «TIN» 5.2. Общие сведения 5.3. Создание TIN 5.3.1. Построение разметки блока 5.3.2. Загрузка базовых слоев для создания TIN 5.3.3. Построение границ TIN 5.4. Отображение TIN 5.5. Загрузка TIN 5.6. Сохранение TIN 5.7. Восстановление TIN 5.8. Информация о TIN 5.8.1. Краткая информация о TIN 5.8.3. Информация о площади TIN 5.9. Перестроение TIN 5.10. Встраивание объектов в TIN 5.11. Контроль точности построения TIN 	$\begin{array}{c} 47 \\ 48 \\ 52 \\ 52 \\ 52 \\ 55 \\ 55 \\ 55 \\ 58 \\ 62 \\ 63 \\ 63 \\ 65 \\ 67 \\ 68 \\ 67 \\ 72 \\ 72 \\ 73 \\ 74 \\ 74 \\ 76 \\ 77 \\ 7$
 4.5.6. Фильтр объектов на поверхности	$\begin{array}{c} 47 \\ 48 \\ 52 \\ 52 \\ 52 \\ 55 \\ 55 \\ 55 \\ 58 \\ 62 \\ 63 \\ 63 \\ 65 \\ 67 \\ 68 \\ 69 \\ 72 \\ 72 \\ 73 \\ 74 \\ 74 \\ 76 \\ 77 \\ 77 \end{array}$
 4.5.6. Фильтр объектов на поверхности	$\begin{array}{c} 47 \\ 48 \\ 52 \\ 52 \\ 55 \\ 55 \\ 55 \\ 58 \\ 62 \\ 63 \\ 65 \\ 67 \\ 68 \\ 69 \\ 72 \\ 74 \\ 74 \\ 74 \\ 77 \\ 7$
 4.5.6. Фильтр объектов на поверхности	$\begin{array}{c} 47 \\ 48 \\ 52 \\ 52 \\ 55 \\ 55 \\ 55 \\ 58 \\ 62 \\ 63 \\ 65 \\ 67 \\ 68 \\ 69 \\ 72 \\ 73 \\ 74 \\ 74 \\ 74 \\ 77 \\ 79 \\ 80 \\ 8$
 4.5.6. Фильтр объектов на поверхности	$\begin{array}{c} 47 \\ 48 \\ 52 \\ 52 \\ 55 \\ 55 \\ 55 \\ 55 \\ 62 \\ 63 \\ 62 \\ 63 \\ 65 \\ 67 \\ 68 \\ 67 \\ 72 \\ 72 \\ 74 \\ 74 \\ 74 \\ 77 \\ 77 \\ 79 \\ 80 \\ 82 \\ 82 \\ 82 \\ 80 \\ 8$
 4.5.6. Фильтр объектов на поверхности	$\begin{array}{c} 47 \\ 48 \\ 52 \\ 52 \\ 52 \\ 55 \\ 55 \\ 55 \\ 62 \\ 63 \\ 63 \\ 65 \\ 67 \\ 68 \\ 69 \\ 72 \\ 72 \\ 72 \\ 74 \\ 74 \\ 74 \\ 77 \\ 79 \\ 80 \\ 82 \\ 8$

5.13. Фильтрация	. 86
5.13.1. Прореживание	. 86
5.13.2. Фильтр выбросов	. 87
5.13.3. Фильтр TIN по диапазону высот	. 89
5.13.4. Гладкая интерполяция TIN	. 90
5.14. Преобразование TIN в векторный слой	. 92
5.15. Создание текстурированных 3D поверхностей TIN	. 93
6. Горизонтали	. 97
6.1. Меню «Горизонтали»	. 97
6.2. Построение горизонталей по TIN	. 98
6.3. Построение горизонталей в пакетном режиме	102
6.4. Построение горизонталей по матрине высот	104
6.5. Построение горизонталей по гладкой модели	106
6.6. Редактирование горизонталей	109
67. Операции с горизонталями	110
671 Сохранение горизонталей	110
672 Экспорт пистов горизонталей	110
	117
	120
6.7.5. Средение горизонталей	120
6.7.6. Тоншость координат ректории у объектор	120
6.8. Контроли точность построония горизонталой	122
6.9.1. Контроль точности построения торизонталей	123
	123
	120
о.о.э. контроль высот вершин торизонталей	120
7. Матрица высот	129
7.1. Меню «Матрица высот»	129
7.2. Оощие сведения	132
7.3. Создание матрицы высот	133
7.3.1. ПОСТРОЕНИЕ МАТРИЦЫ ВЫСОТ ПО Т IN	133
7.3.2. Построение матрицы высот по регулярным пикетам	135
7.3.3. Построение матрицы высот по пикетам	137
7.3.4. Построение матрицы высот по CSV-файлу	138
7.3.5. Построение матрицы высот по гладкой модели	140
7.3.6. Построение плотной матрицы высот	142
7.3.7. Построение плотной матрицы высот методом SGM	148
7.3.8. Пакетное построение ЦМР	161
7.3.9. Построение ЦМР из внешнего источника в рамках выбранного полигона	165
7.4. Фильтрация матрицы высот	168
7.4.1. Фильтр строений и растительности	168
7.4.2. Фильтр по углу наклона	173
7.4.3. Медианный фильтр	176
7.4.4. Сглаживающий фильтр	178
7.4.5. Фильтр по характеристикам изображения	179
7.5. Преобразование координат матрицы высот	183
7.5.1. Транспонирование матрицы высот	183
7.5.2. Преобразование системы координат матрицы высот	183
7.5.3. Перестраивание матрицы высот с учетом последнего уравнивания	187
7.6. Пустые ячейки в матрице высот	189
7.6.1. Общие сведения	189
7.6.2. Заполнение пустых ячеек с помощью линейной интерполяции	189
7.6.3. Заполнение пустых ячеек методом гладкой интерполяции	192
7.6.4. Заполнение пустых ячеек ближайшим значением	194
7.6.5. Заполнение пустых ячеек постоянным значением	197

7.6.6. Заполнение пустых ячеек минимальными значениями	198
7.6.7. Преобразование ячеек в пустые	202
7.7. Редактирование матрицы высот	204
7.7.1. Объединение матриц высот	204
7.7.2. Изменение высоты фрагментов в матрице высот	209
7.7.3. Сдвиг матрицы высот	211
7.7.4. Нарезка матрицы высот на листы	211
7.7.5. Интерполяция матрицы высот	213
7.7.6. Обрезка матрицы высот по полигонам	214
7.7.7. Добавление пикетов в матрицу высот	217
7.7.8. Преобразование матрицы высот в пикеты	218
7.7.9. Панель инструментов «Редактирование матрицы высот»	220
7.8. Контроль точности построения матрицы высот	221
7.8.1. Построение матрицы разности	221
7.8.2. Сравнение матриц высот	222
7.8.3. Поиск областей матрицы высот	224
7.8.4. Контроль матрицы высот по TIN	227
7.8.5. Контроль матрицы высот по векторным объектам	228
7.8.6. Контроль матрицы высот по точкам триангуляции	230
7.8.7. Построение гистограммы по матрице высот	232
7.8.8. Создание файла статистики по матрице высот	233
7.8.9. Списки min/max значений матрицы высот	235
7.9. Сохранение матрицы высот	237
7.10. Восстановление матрицы высот	238
7.11. Загрузка матрицы высот	239
7.12. Экспорт матрицы высот	240
7.12.1. Экспорт матрицы высот	240
7.12.2. Экспорт в CSV	241
7.12.3. Экспорт в DTED	
7.12.4. Экспорт в ERDAS Imagine	243
7.12.5. Экспорт в GeoTIFF	
7.12.6. Экспорт в PCIDSK	
7.12.7. Экспорт в MTW	
7.12.8. Пакетный экспорт матриц высот	
7.13. Импорт матрицы высот	250
8. Вычисление объемов	254

1. Назначение документа

Настоящий документ предназначен для получения подробной информации о создании цифровой модели рельефа (ЦМР). В документе содержатся сведения о построении регулярной сетки узлов и о работе со слоями, необходимыми для создания ЦМР, а именно слоями пикетов, нерегулярной сети треугольников (TIN), горизонталей и матриц высот. Также рассматриваются особенности создания на основе этих слоев цифровой модели рельефа.

2. Создание цифровой модели рельефа

В системе предусмотрена возможность создания цифровых моделей рельефа по различным наборам данных.

Цифровая модель рельефа (от англ. Digital Elevation Model (DEM)) — цифровое картографическое представление земной поверхности как в виде регулярной сетки высот (DEM) так и в виде нерегулярной сетки треугольников (TIN).

Для построения цифровой модели рельефа используются следующие наборы данных, по отдельности или в совокупности:

- *Пикеты* точечные векторные объекты, расположенные на поверхности рельефа;
- Нерегулярная пространственная сеть треугольников (TIN, Triangulation Irregular Network) — одна из моделей пространственно-координированных данных, которая используется при конструировании цифровой модели рельефа, в виде высотных отметок в узлах нерегулярной сети треугольников, соответствующей триангуляции Делоне;
- *Горизонтали* векторные линии, соединяющие точки с одинаковыми высотами на местности;
- Матрица высот цифровое картографическое представление земной поверхности в виде регулярной сетки значений высот.

Получение данных, необходимых для построения ЦМР, возможно как со снимков центральной проекции, так и с космических сканерных снимков.

Для работы с указанными наборами данных используется меню ЦМР.

3. Регулярная сетка узлов

3.1. Создание сетки

В системе предусмотрена возможность построения регулярной *сетки* с заданным шагом. Сетка служит для создания пикетов в автоматическом режиме с использованием коррелятора или в полуавтоматическом режиме профилирования. Шаг сетки используется в качестве частоты измерения узлов, в окрестностях которых рассчитываются пространственные координаты и создаются пикеты. Также сетка используется для различных операций, таких как создание карты качества стерео, построения матрицы высот по плотной модели и других операций (см. разделы Автоматический расчет пикетов, Создание пикетов в режиме профилирования, руководства пользователя «Векторизация»).

Сетка строится как на весь блок изображений, так и на любую часть блока или на выбранную стереопару. Форма границ сетки также может быть как прямоугольной, так и в виде произвольного полигона.

Для создания сетки выберите **Сетка > Создать** (**Ctrl+N, G**) или нажмите на кнопку основной панели инструментов. В *Диспетчере слоев* создается новый слой *Сетка*.

Область построения сетки определяется одним из следующих способов:

- чтобы создать сетку с заданной *прямоугольной границей*, одновременно удерживайте клавишу **Shift** и растяните кнопкой мыши растяните прямоугольную область на блоке изображений или на выбранной стереопаре;
- чтобы создать сетку с произвольной границей, определите область построения сетки в режиме группового выделения полигоном и при нажатой клавише Shift определите мышью все узлы границы — области построения сетки. Завершите создание произвольных границ сетки двойным щелчком мыши.

При определении области сетки может использоваться разметка.

- для использования полигонов векторного слоя в качестве областей построения сетки выполните следующие действия:
 - Выберите Векторы > Создать слой, чтобы создать векторный слой без классификатора либо загрузите слой с полигонами, которые используются в качестве границ сетки.
 - 2) Создайте полигон таким образом, чтобы границы полигона совпадали с границами области, которая используется для построения.

- 3) [опционально] Выделите полигоны для использования в качестве границ построения сетки, иначе сетка строится с учетом всех полигонов слоя.
- 4) Выберите Сетка > Создать границы из векторов. В результате граница сетки проходит по контуру созданного полигона.
- чтобы построить сетку на весь блок изображений без явного определения границ, выберите Сетка > Свойства, задайте параметры сетки и нажмите ОК. Сетка строится автоматически на весь блок и граница сетки проходит по внешнему контуру изображений блока.

После определения границ сетки создается сеть узлов с заданными ранее или используемыми по умолчанию параметрами.

Для сохранения созданной сетки в ресурсах активного профиля служат пункты меню Сетка - Сохранить и Сетка - Сохранить как. Сетка сохраняется в файл *.x-grid.

Чтобы открыть ранее сохраненную сетку, выберите **Сетка > Открыть**. Чтобы закрыть сетку, выберите **Сетка > Закрыть**. Чтобы закрыть все слои сетки, выберите **Сетка > Закрыть все открытые слои**.

Контекстное меню слоя *Сетка* в *Диспетчере задач* дублирует команды сохранения и загрузки меню **Сетка**, а также позволяет закрыть слой сетки.

Рис. 1. Прямоугольная сетка на весь блок изображений

7

3.2. Параметры сетки

Чтобы изменить параметры созданной сетки, выберите **Сетка > Свойства**. Открывается окно **Свойства сетки**.

뤚 Свойства сетки	
Шаг по Х	70.0 🌠 м
Шаг по Ү	70.0 🏂 м
Угол поворота	0.0 🗴 °
Уровень Z	0.0 X M
Средний размер пикселя (GSD)	0.235 м
ОК	Отмена Применить

Рис. 2. Параметры регулярной сетки

Окно Свойства сетки служит для настройки следующих параметров:

 Шаг по X и Шаг по Y — частота нанесения узлов соответственно по осям X и Y в метрах;

Для изменения направления обхода узлов сетки в режиме профилирования установите отрицательные значения шага сетки.

Угол поворота — угол поворота сетки сети узлов в градусах;

Задается при работе вручную в режиме профилирования.

Происходит поворот только сетки узлов. Область, ограничивающая построение сетки сетки узлов, остается в исходном состоянии.

- Уровень Z уровень сетки над рельефом (в метрах) для визуально правильного отображения сетки;
- Средний размер пиксела (GSD) отображается значение среднего размера пиксела в метрах, если в проекте есть результаты уравнивания или размер пиксела задан хотя бы для одного изображения.

Для отображения сетки нажмите на кнопку **Применить**. Для изменения параметров нажмите OK.

Рис. 3. Сетка, построенная по произвольной границе (с поворотом сетки)

Чтобы изменить параметры отображения сетки, щелкните мышью по цветному квадратику слева от слоя в *Диспетчере слоев*. Открывается окно **Параметры отображения слоя**, которое позволяет настроить цвет узлов и границ сетки, а также тип и размер символа для отображения узлов сетки.

👼 Параметры отображения слоя		
Слой: Сетка		
Цвета	Символы	
Текущий узел	Узлы	🕫 Точка 🛛 🌠 пикс 🔿 Символ 🔵 💌
Границы:		
Узлы		
<u> </u>	J [
		ОК Отмена Применить

Рис. 4. Параметры отображения сетки

Дополнительные параметры отображения сетки, а также настройки режима профилирования задаются на закладке **Сетка** окна **Настройки** (см. руководство пользователя «Общие параметры системы»).

4. Пикеты

Пикеты — это точечные векторные объекты, расположенные на поверхности рельефа. Пикеты, как и другие векторные слои используются в качестве базового слоя при построении TIN.

4.1. Меню «Пикеты»

Меню Пикеты содержит стандартные пункты меню для загрузки, сохранения, импорта и экспорта векторных слоев, а также для выполнения специфических операций создания и редактирования пикетов.

Меню Пикеты расположено в меню ЦМР.

Меню Пикеты	Назначение			
🔁 Открыть (Ctrl+O, V)	позволяет загрузить <i>векторный</i> слой из файла *.x-data			
Предыдущие	позволяет осуществить быстрый доступ к после ним загруженным <i>векторным</i> слоям			
Сохранить	позволяет сохранить или перезаписать активн векторный слой в виде файла с расширени *.x-data			
Сохранить как	позволяет сохранить активный <i>векторный</i> сл под новым именем в виде файла с расширени *.x-data			
Сохранить выделенные как	позволяет сохранить только выделенные <i>вектор- ные</i> объекты			
🔀 Закрыть	позволяет закрыть векторный слой			
ін Расчет пикетов	позволяет выполнить автоматический расчет <i>пикетов</i> с использованием коррелятора в обла- стях перекрытия снимков стереопар по регуляр- ной сетке узлов			
Режим профилирования	содержит пункты меню используемые для полу- автоматического создания <i>пикетов</i> по регуляр- ной сетке			
Фильтрация	содержит пункты меню используемые для авто- матического удаления, исправления или обнару- жения <i>пикетов</i> , попавших на дома, деревья, машины, в ямы и т.п., полученных при автома- тическом расчете пикетов, а также для фильтра- ции случайных выбросов			
Импорт	содержит пункты меню для импорта <i>векторных</i> слоев из файлов с различными расширениями (см. раздел «Импорт векторных объектов» руко- водства пользователя «Векторизация»)			
Экспорт	содержит пункты меню для экспорта <i>векторных</i> слоев в различные форматы (см. раздел «Экс- порт векторных объектов» руководства пользо- вателя «Векторизация»)			

Таблица 1. Краткое описание меню «Пикеты»

4.2. Создание пикетов

4.2.1. Режимы и способы создания пикетов

В системе предусмотрены следующие режимы создания пикетов:

• *вручную в стереорежиме* — точки добавляются вручную в стереорежиме с использованием кореллятора или без него;

Параметры коррелятора задаются в окне общих настроек системы на закладе Коррелятор (см. руководство пользователя «Общие параметры системы»).

 в полуавтоматическом режиме профилирования с предварительным созданием регулярной сетки узлов — осуществляется последовательное прохождение всех узлов регулярной сетки и добавление пикетов вручную (с использованием кореллятора или без него) либо пропуска узла и перехода к следующему;

Параметры коррелятора задаются в окне общих настроек системы на закладе **Коррелятор** (см. руководство пользователя «Общие параметры системы»).

 в автоматическом режиме с предварительным созданием регулярной сетки узлов. При этом в окрестностях узлов сетки с помощью коррелятора вычисляются пространственные координаты точек и создаются пикеты, если координаты удалось вычислить. В автоматическом режиме выполняется обход узлов сетки заданное число раз с разными параметрами коррелятора, контроль точности, отбраковка и фильтрация пикетов, сохранение оценки качества.

Параметры коррелятора при автоматическом расчете пикетов настраиваются в окне Расчет пикетов.

4.2.2. Панель инструментов «Режим профилирования»

Для работы в режиме профилирования предусмотрены пункты меню **ЦМР > Пике**ты > Режим профилирования, которые частично дублируются кнопками дополнительной панели инструментов Режим профилирования.

Кнопки	Назначение
📸 Включить	позволяет включить/отключить режим профили- рования
Добавить точку (Enter)	позволяет добавить пикет в текущий узел
Пропустить точку (Delete)	позволяет пропустить узел (без добавления пи- кета) и перейти к следующему узлу

Таблица 2. Панель инструментов «Режим профилирования»

Кнопки	Назначение				
Возврат (Backspace)	позволяет вернуться в предыдущий узел (удаления пикета)				
对 Маркер в текущий узел	позволяет переместить маркер в текущий активный узел сетки позволяет переместить маркер в ближайший него текущему положению узел сетки, который автоматически становится активным (при усло- вии, что маркер находится внутри сетки в геоде- зической системе координат), для начала обхода пикетов вручную				
া К ближайшему узлу сетки					
🏢 К первому узлу сетки	позволяет переместить маркер в левый нижний узел сетки и сделать этот узел активным				
🗮 Режим: последовательно по строкам	позволяет включить последовательный режим обхода сетки по строкам				
Режим: последовательно по столбцам	позволяет включить последовательный режим обхода сетки по столбцам				
Режим: «змейкой» по строкам	позволяет включить режим обхода сетки «змей- кой» по строкам				
🌆 Режим: «змейкой» по столбцам	позволяет включить режим обхода сетки «змей кой» столбцам				
Настройка	открывает общее окно настроек на закладке Режим профилирования для настройки пара- метров режима (см. раздел 4.2.4)				

4.2.3. Создание пикетов в режиме профилирования

Для *полуавтоматического создания пикетов* по регулярной сетке в системе предусмотрен **Режим профилирования**.

В режиме профилирования производится обходи по узлам сетки, так что плановые координаты точек могут быть поставлены равномерно. Плановые координаты маркера при переходе с одного узла сетки на другой сохраняются, а высота устанавливается вручную. Установка пикетов в режиме профилирования возможна как с использованием коррелятора, так и без него.

Первоначальная координата высоты маркера при переходе на первый узел соответствует уровню сетки по Z, заданному в окне **Свойства сетки**. Уровень высоты маркера при переходе на каждый последующий узел определяется настройками.

Добавление пикетов в режиме профилирования осуществляется в стереорежиме в 2D-окне стереопары.

Если сетка построена на весь блок изображений, в окне общих параметров системы на закладке **Режим профилирования** предусмотрена возможность настройки автоматического перехода на следующую стереопару при обходе узлов.

Для создания пикетов в режиме профилирования выполните следующие действия:

- 1. Задайте сетку на необходимую область для создания пикетов.
- 2. Создайте или сделайте активным векторный слой для создания пикетов.
- Выберите ЦМР > Пикеты > Режим профилирования > Включить или нажмите на кнопку а дополнительной панели инструментов Режим профилирования. Маркер устанавливается в левый нижний узел сетки — начало обхода.

Если ранее не была создана сетка узлов, она создается автоматически на весь блок изображений.

При закрытии слоя сетки Режим профилирования отключается автоматически.

- 4. Выберите направление обхода узлов сетки в меню **ЦМР > Пикеты > Режим** профилирования или с помощью кнопок дополнительной панели инструментов **Режим профилирования**.
- 5. Выберите Окна > Новое 2D-окно (стереопара) (Ctrl+Alt+W) или нажмите на кнопку П основной панели инструментов. Открывается 2D-окно стереопары для начала обхода узлов сетки.
- [опционально] Для автоматического центрирования изображения по маркеру при переходе к следующему узлу сетки включите Режим неподвижного маркера. Для этого нажмите на кнопку в или используйте горячую клавишу F6.

Для векторизации объектов в процессе обхода узлов сетки в режиме профилирования, временно отключите **Режим неподвижного маркера**.

7. Нажмите на кнопку 😨, чтобы включить стереорежим в 2D-окне стереопары.

Для работы в режиме профилирования должен быть включен режим создания точечных объектов — кнопка : дополнительной панели инструментов **Векторы**.

- 8. Для обхода узлов сетки предусмотрены следующие инструменты:
 - чтобы добавить пикет в текущий узел сетки вручную, установите высоту маркера с помощью колеса мыши и нажмите клавишу Enter;
 - чтобы добавить пикет в текущий узел сетки с помощью коррелятора, нажмите клавишу Пробел для установки высоты маркера с помощью коррелятора и нажмите клавишу Enter;

После добавления пикета маркер устанавливается на следующий узел сетки в соответствии с выбранным направлением обхода.

- чтобы перейти к следующему узлу без добавления пикета, нажмите клавишу Delete;
- чтобы перейти к предыдущему узлу сетки, нажмите клавишу Backspace.
 - Для удаления пикета служат горячие клавиши **Ctrl+Z**. Удаление пикетов возможно только если включен режим сохранения истории последних операций и разрешена их отмена (см. раздел *«Настройки отмены»* в руководстве пользователя «Общие параметры системы»).
- После прохождения последнего узла сетки выдается сообщение 0бход узлов завершен. Нажмите ОК. Сохраните векторный слой с полученным набором пикетов для дальнейшего использования.

Чтобы запомнить положение текущего активного узла при обходе, сохраните слой сетки.

Чтобы продолжить обход узлов сетки с текущего положения, выполните следующие действия:

- 1. Загрузите сохраненный слой сетки.
- 3. Установите маркер в окрестности активного узла сетки.
- 4. Выберите ЦМР > Пикеты > Режим профилирования > К ближайшему узлу сетки или нажмите на кнопку дополнительной панели инструментов Режим профилирования, чтобы переместить маркер в ближайший узел.
- 5. Продолжите обход узлов сетки.

4.2.4. Параметры режима профилирования

Чтобы задать предварительные параметры работы в режиме профилирования, выполните следующие действия:

 Выберите ЦМР > Пикеты > Режим профилирования > Настройки. Открывается окно Параметры на закладке Режим профилирования (подробное описание общих параметров см. в руководстве пользователя «Общие параметры системы»).

🜲 Параметры	
⊡- Окна	Режим профилирования
Маркер (схема блока)	Координата Z маркера при переходе к следующему узлу сетки:
Маркер (стереопара)	С Нементи
···· Масштарирование	
- Управление	C Z сетки
- Модули	С Значение 0.0 12 т
— Схема блока	
Растр	Ограничивать обход в 2D-окне стереодары
Коррелятор	
Матрица высот	🗌 Автоматическая смена стереопары
- TIN	
Векторы	
Подписи	
Отметки высот	
Номера вершин	
- Растр	
Ориентирование	
- Отмена	
Резервные копии	
Системные	
,	
	ОК Отмена

Рис. 5. Параметры режима профилирования

- 2. Выберите один из вариантов определения положения маркера по высоте при переходе к следующему узлу сетки:
 - Не менять положение маркера по высоте не изменяется, т. е. используется Z-координата маркера предыдущего узла сетки;
 - **Z сетки** положение маркера по высоте задается равным уровню Z сетки, заданному в окне **Свойства сетки**;
 - Значение положение маркера по высоте задается равным значению в поле ввода (в метрах).
- [опционально] В системе по умолчанию установлен флажок Ограничивать обход в 2D-окне стереопары, что позволяет настроить обход узлов сетки в режиме профилирования только в пределах стереопары независимо от размера сетки.

Не рекомендуется устанавливать флажок **Автоматическая смена стереопары** при установленном флажке **Ограничивать обход в 2D-окне стереопары**, так как это приводит к некорректной работе.

4. [опционально] Для обхода узлов «глобальной» сетки с автоматической сменой стереопар снимите флажок **Ограничивать обход в 2D-окне стереопары** и

установите флажок **Автоматическая смена стереопары**. При этом на автоматическую смену стереопары влияет параметр **Граничная зона**, который определяет границу стереопары в процентах, при достижении которой во время прохождения узлов в режиме профилирования происходит смена стереопары в 2D-окне.

4.3. Автоматический расчет пикетов

4.3.1. Выполнение автоматического расчета пикетов

В системе предусмотрена возможность автоматического расчета пикетов с использованием коррелятора в областях перекрытия снимков стереопар по регулярной сетке узлов.

Все выбранные стереопары должны входить в уравненную часть блока (см. руководство пользователя «Уравнивание сети»), иначе расчет пикетов не выполняется либо выполняется некорректно. В первом случае выдается сообщение об ошибке, во втором — привязка рассчитанных пикетов к системе координат проекта не представляется возможной.

Полученные пикеты используются как векторная основа для создания ЦМР. Дополнительные возможности редактирования пикетов позволяют получить векторную основу для построения TIN и создания матрицы высот.

Принцип автоматического расчета пикетов заключается в следующем. Для каждой выбранной ориентированной стереопары автоматически выполняется обход всех узлов сетки, попадающих в область перекрытия снимков стереопары, и попытка вычислить пространственные координаты в окрестности каждого узла сетки с помощью коррелятора.

В случае успешной корреляции, для каждой найденной точки осуществляется **Контроль точности по обратной стереопаре**, по результатам которого точка либо добавляется в векторный слой как точечный объект либо исключается. Если не удалось вычислить пространственные координаты в окрестности какого-либо узла сетки, он пропускается и осуществляется переход к следующему узлу сетки.

Рис. 6. Автоматический расчет пикетов на произвольной области

Перед запуском автоматического расчета пикетов выполните следующие подготовительные действия:

- 1. Определите *область поиска*: выделите стереопары блока для автоматического расчета пикетов.
- 2. Постройте регулярную сетку узлов для выбранной области поиска.
- 3. Выберите ЦМР > Пикеты > Расчет пикетов. Открывается окно Расчет пикетов.

Если ранее не была создана сетка узлов, она создается автоматически на весь блок изображений и открывается окно Свойства сетки для определения параметров сетки.

Расчет пикетов Конфигурация коррелятора		
*Пустыня		•
Область поиска Все изображения Выделенные изображения Активная стереопара Использовать разметку Использовать межнаршрутные стереопары Учитывать угол засечки 0 90	Начальное приближение С диапазон высот стереопары С диапазон высот проекта Расширение диапазона С Средняя высота стереопары С Заданная высота С Точки триагуляции С Матрица высот	× n
Сетка Площадь 13189476 m^2 Примерное число узлов 825273 Свойства	Максимальное отклонение 50.0 Дополнительно Сохранять оценки качества в атрибуты Удалить избыточные точки Случайное распределение точек Контроль точности по обратной стереопаре	n
Назначение Эагрузить в векторный слой Сохранить в ресурсы Настроить (не настроено)		
	ОК Распределенная обработка	Отмена

Рис. 7. Окно «Расчет пикетов»

- 4. В разделе Конфигурация коррелятора выберите в списке один из следующих типов местности:
 - горная местность;
 - городская застройка;
 - пустыня;
 - сельская местность;
 - сельская местность 2.

- 5. В разделе **Область поиска** установите область поиска, для которой осуществляется автоматический расчет пикетов:
 - Все изображения для выбора всех изображений блока;
 - Выделенные изображения для выбора выделенных в 2D-окне блока изображений;

- Для просмотра и изменения состава выделенных изображений в 2D-окне блока нажмите на кнопку
- Активная стереопара для выбора изображений стереопары, открытой в активном 2D-окне.

Все выбранные стереопары должны входить в уравненную часть блока (см. руководство пользователя «Уравнивание сети»), иначе расчет пикетов не выполняется либо выполняется некорректно. В первом случае выдается сообщение об ошибке, во втором — привязка рассчитанных пикетов к системе координат проекта не представляется возможной.

6. [опционально] Для того чтобы при расчете проходить каждый узел сетки один раз, перед определением параметров создайте разметку, установите флажок Использовать разметку и выберите слой разметки в списке.

Привязка областей разметки к стереопарам осуществляется по атрибутам region_image_code и region_image_code_2.

- [опционально] По умолчанию расчет пикетов осуществляется для маршрутных стереопар. Для расчета пикетов на межмаршрутных стереопарах, образованных выбранными изображениями, установите флажок Использовать межмаршрутные стереопары.
- 8. [опционально] Для отбраковки грубых ошибок по Z на снимках с малым или нулевым углом засечки установите флажок **Учитывать угол засечки** и определите значение минимального угла с помощью ползунка.

Для того чтобы оценить углы засечки на снимках проекта, выполните следующее:

- 1. Создайте карту качества стерео для блока изображений (см. раздел «Оценка качества стерео» руководства пользователя «Векторизация»).
- Измените расцветку карты качества стерео в соответствии со значениями атрибута st_ang (Векторы > Атрибуты > Расцветка по значению атрибута, см. разделы «Оценка качества стерео» и «Изменение расцветки векторов» руководства пользователя «Векторизация»).
- 3. Для того чтобы получить информацию о значении атрибута st_ang для выбранного узла карты качества стерео, выделите соответствующий узел карты качества стерео и выберите Окна > Атрибуты объектов.
- [опционально] В разделе Сетка в полях отображается Площадь слоя сетки в м², а также Примерное число узлов сетки. Для изменения параметров слоя сетки нажмите на кнопку Свойства.

Для изменения границ сетки необходимо закрыть окно Расчет пикетов.

10. В разделе Начальное приближение выберите способ расчета диапазона высот поиска точек для работы коррелятора:

Начальное приближение задает значение координаты Z узла сетки, исходя из которого вычисляются первоначальные координаты пикета на левом и правом снимках стереопары.

Выбор оптимального способа расчета диапазона высот для поиска точек зависит от имеющихся данных о местности (степень пересеченности рельефа, высоты, характер области поиска, в которой происходит автоматический расчет пикетов).

- Диапазон высот стереопары диапазон высот рассчитывается отдельно для каждой стереопары из высот ранее измеренных в проекте пикетов;
- Диапазон высот проекта диапазон высот берется из значений Высота местности в свойствах проекта или рассчитывается из высот ранее измеренных в проекте пикетов;

Поле Расширение диапазона позволяет увеличить на заданное значение диапазон высот стереопары или проекта для поиска пикетов

- Средняя высота стереопары в качестве начального приближения используется средняя высота каждой стереопары, рассчитанная из параметров внешнего ориентирования или из высот ранее измеренных в проекте пикетов;
- Заданная высота введите значение высоты в метрах для использования в качестве начального приближения;
- Точки триангуляции позволяет вычислить диапазон высот для каждой стереопары по гладкой модели, построенной по точкам триангуляции проекта;
- Матрица высот в качестве начального приближения используется значение высоты выбранной матрицы высот в точке с координатами ХҮ узла сетки.

Если узел сетки попадает в пустую ячейку матрицы высот, то используется средняя высота соответствующей стереопары.

Для установки величины допустимого отклонения рассчитанных пикетов по высоте (координаты Z) от начального приближения введите в поле **Макси-мальное отклонение** значение в метрах.

- 11. [опционально] Раздел **Дополнительно** позволяет настроить следующие параметры:
 - Сохранять оценки качества в атрибуты позволяет сохранить оценки качества расчета пикетов в качестве атрибутов точечного векторного объекта; оценки сохраняются в следующие атрибуты объекта:
 - «corr» (double) коэффициент корреляции, число в интервале от заданного порога корреляции до 1;
 - «aq» (double) сигма автокорреляции;
 - «std_dev» (double) стандартное отклонение;;
 - о «pass» (int) количество проходов;
 - о «disp» (int) значение дисперсии.

Для просмотра значений атрибутов качества расчета пикетов выделите пикет и выберите **Окна · Атрибуты объектов**. Открывается окно **Атрибуты объекта**.

🕛 🗋 🌽 🖉 🛛 💆		
Имя	Значение	
"corr" (float, 8)	0.85565587	
"aq" (float, 8)	3.755752217	
"std_dev" (float, 8)	2	
"pass" (integer, 4)	2	
"disp" (integer, 4)	4	

Рис. 8. Оценки качества рассчитанного пикета

- Удалить избыточные точки служит для прореживания близлежащих пикетов, полученных при проходе по одним и тем же узлам сетки на разных стереопарах;
 - Прореживание выполняется после завершения процедуры расчета пикетов в соответствии с заданным значением радиуса, установленного используемой конфигурации коррелятора.

При установленном флажке Сохранять оценки качества в атрибуты из нескольких найденных близлежащих точек удаляются точки с наименьшим коэффициентом корреляции (наименьшим значением атрибута «*corr*»).

 Случайное распределение точек — служит для случайного распределения пикетов в пределах ½ размера ячейки сетки от узла сетки;

- Контроль точности по обратной стереопаре позволяет проверить результаты поиска точки на обратной стереопаре; если результаты не совпадают, точка удаляется;
- 12. В разделе Назначение установите параметры загрузки и сохранения рассчитанных пикетов:
 - Загрузить в векторный слой для загрузки пикетов в активный векторный слой;

Если активный векторный слой отсутствует, пикеты загружаются в новый векторный слой.

 Сохранить в ресурсы — для сохранения пикетов в ресурсах активного профиля без загрузки. Нажмите на кнопку Настроить для определения параметров сохранения пикетов. Открывается окно Настройка сохранения пикетов.

📚 Настройка сохранения пикетов				
С Сохранить в один ресурс				
Разбить на части				_
С По стереопарам				
По прямоугольным областям	1000	• × 1000	1∕4 M	
и сохранить в папке:				
		ОК		Отмена

Рис. 9. Окно «Настройка сохранения пикетов»

Для сохранения пикетов в одном векторном файле активного профиля выполните следующие действия:

- Выберите папку в ресурсах активного профиля и введите имя векторного файла в поле Имя ресурса. Нажмите ОК для создания нового векторного файла и возврата к окну Настройка сохранения пикетов.
- В поле ввода окна Настройка сохранения пикетов отражается путь и имя нового векторного файла. Нажмите ОК для возврата в окно Расчет пикетов.

Для сохранения пикетов по частям в нескольких векторных файлах активного профиля выполните следующие действия:

- 1) Установите Разбить на части.
- Выберите один из вариантов разделения пикетов По прямоугольным областям и введите размер прямоугольной области в метрах или По стереопарам.
- 3) В поле **Сохранить в папке** введите путь для сохранения файла или нажмите на кнопку, чтобы выбрать имя и путь в ресурсах активного профиля для сохранения пикетов по частям в соответствующих им векторных файлах и нажмите ОК.
- В поле ввода окна Настройка сохранения пикетов отображается путь и имя нового векторного файла. Нажмите ОК для возврата в окно Расчет пикетов.
- 13. Нажмите ОК. Запускается процесс расчета пикетов.

Процесс автоматического расчета пикетов в некоторых случаях занимает длительное время.

Для настройки выполнения расчета пикетов в режиме распределенной обработки нажмите на кнопку **Распределенная обработка...** и задайте параметры распределения задач.

4.3.2. Конфигурации коррелятора

Конфигурация коррелятора — сценарий выполнения расчета пикетов, который определяет количество обходов узлов регулярной сетки и набор значений параметров коррелятора для каждого обхода.

Окно Конфигурации коррелятора служит для формирования списка конфигураций коррелятора. Чтобы открыть окно, нажмите на кнопку ____ в панели Конфигурация коррелятора окна Расчет пикетов.

📚 Конфигурации коррелятора	_ 🗆 🗵
Горная местность Городская застройка Пустыня	Создать
Сельская местность Сельская местность 2	Редактировать
	Копировать
	Переименовать
	Удалить
	Закрыть

Рис. 10. Окно «Конфигурации коррелятора»

В левой части окна отображается список всех созданных конфигураций коррелятора. Список по умолчанию включает стандартные конфигурации коррелятора с подобранными значения параметров для следующих типов местности:

- *горная местность* для автоматического расчета пикетов на снимках с преимущественно горной местностью с большими перепадами высот;
- *городская застройка* для автоматического расчета пикетов на снимках преимущественно с застройкой городского типа;
- пустыня для автоматического расчета пикетов на снимках с однородной пустынной местностью с редкой растительностью;
- сельская местность для автоматического расчета пикетов на снимках сельской местности с незначительным количеством построек и инфраструктуры;
- сельская местность 2 для автоматического расчета пикетов на «сельской» местности с неоднородными частями рельефа, а также при наличии снимков с большим углом засечки в конфигурации используется маска большего размера; точность расчета пикетов в конфигурации ниже, чем при использовании типа сельская местность.

Правая панель окна содержит следующие кнопки для управления конфигурациями коррелятора:

- Создать позволяет задать имя и параметры для создания новой конфигурации коррелятора;
- Редактировать позволяет редактировать параметры выбранной в списке конфигурации коррелятора;
- Копировать позволяет создать копию выбранной в списке конфигурации коррелятора с другим именем, но такими же параметрами;
- Переименовать позволяет переименовать выбранную в списке конфигурации коррелятора;
- Удалить позволяет удалить выбранную в списке конфигурации коррелятора;

Предустановленные конфигурации коррелятора не могут быть изменены или удалены.

• Закрыть — позволяет закрыть окно Конфигурации коррелятора.

4.3.3. Настройка конфигурации коррелятора

Для просмотра и настройки конфигурации коррелятора служит окно **Редактиро**вание параметров, которое открывается в следующих случаях:

- при редактировании существующей конфигурации выберите конфигурацию в списке окна Конфигурации коррелятора и нажмите на кнопку Редактировать;
- при создании новой конфигурации нажмите на кнопку Создать, введите имя новой конфигурации и нажмите ОК.

👼 Редактирование парам	етров: Озерный край				
Проходы коррелятора					
+ — 💌 🔺 🥎	Проход Полуразмеры корреляционной маски Увеличение области поиска Порог корреляции Область поиска контрастной точки С Контроль автокорреляции Максимальный радиус автокорреляции	10 24 × 10 24 пикс 5 24 × 1 24 пикс 0.7 24 5 24 × 5 24 пикс 144 30.0 24 пикс			
		Дополнительно			
Прочее	на измерений по 7:				
С диапазон высот пр	оекта				
• диапазон высот стереопары					
Радиус для фильтра избь	точных вершин	.3 🎉 шага сетки			
Предварительный расчет первого приближения Настройка					
Дополнительный проход по обратной стереопаре					
Неиспользуемая гранична	ая область снимка, %	14 × 0 14			
Максимальный поперечны	ий параллакс	1.5 🌠 пикс			
		ОК Отмена			

Рис. 11. Окно параметров прохода коррелятора

Настройка конфигурации коррелятора в окне **Редактирование параметров** заключается в определении сценария выполнения автоматического расчета пикетов.

В зависимости от местности сценарий может включать как один, так и несколько проходов узлов сетки, для каждого из которых подбирается определенный набор параметров коррелятора.

Для настройки конфигурации коррелятора выполните следующие действия:

1. Создайте список из необходимого количества проходов коррелятора.

Проходы в списке расположены в последовательности их использования при автоматическом расчете пикетов.

Для формирования списка проходов предусмотрены следующие кнопки:

- + позволяет добавить новый проход в конец списка;
- — позволяет удалить выбранный проход;
- 🔻 позволяет переместить выбранный проход вниз по списку;
- 📥 позволяет переместить выбранный проход вверх по списку;
- 🔊 позволяет вернуть значения параметров к заданным по умолчанию.
- 2. Выделите в списке проход коррелятора для настройки его параметров.

- В разделе Проход настройте следующие основные параметры коррелятора для выбранного в списке прохода:
 - Полуразмеры корреляционной маски половина линейного размера прямоугольной маски корреляции в пикселах по осям X и Y;
 - Увеличение размера маски повышает качество распознавания для плавно меняющегося рельефа и снижает влияние мелких деталей на поверхности, однако снижает общее количество полученных точек. Также при обработке материала со слабоконтрастными областями, соответствующими наклонным формам рельефа (например, поля или лужайки на склонах холмов), возможно добавление точек, соответствующих не центру, а краю маски.
 - Увеличение области поиска позволяет задать количество пикселов для увеличения области поиска больше заданного значения размера корреляционной маски;

Увеличение области поиска используется в случаях, когда по данным ориентирования стереопары расчетная область поиска соответствующей точки на правом снимке недостаточна (недостаточно связующих точек, например на высотных объектах или в углах стереопары). Необходимость увеличить область поиска по Y может возникнуть при низкой точности взаимного ориентирования стереопары.

- Порог корреляции минимально допустимое значение коэффициента корреляции;
- Значение порога корреляции существенно зависит как от качества материала, так и от остальных параметров. Для корректной работы корреляционного алгоритма рекомендуется устанавливать значение не меньше 0.7.
- Область поиска контрастной точки размер области вокруг узла сетки, в которое перед корреляцией производится поиск максимально контрастной точки.

Значение рекомендуется увеличивать для изображений с четкими контурами объектов и уменьшать для малоконтрастных областей, где вероятность ошибок коррелятора велика.

• Контроль автокорреляции и Максимальный радиус автокорреляции — служит для контроля автокорреляции точки — степени уникальности точки в некоторой ее окрестности на левом снимке.

Чем выше значение радиуса автокорреляции, тем менее характерной является точка и тем больше вероятность неверного сопоставления ее с правым снимком, в том числе при высоком коэффициенте корреляции.

Кнопка **Дополнительно** служит для настройки дополнительных параметров выбранного прохода.

- 4. В разделе **Прочее** настройте следующие дополнительные параметры прохода коррелятора:
 - Ограничение диапазона измерений по Z позволяет установить один из критериев отбраковки по Z-диапазону, который применяется к каждой рассчитанной с помощью коррелятора точке:
 - диапазон высот проекта, определенный пользователем в свойствах проекта;
 - диапазон высот стереопары, рассчитанный при уравнивании блока снимков.
 - Радиус для фильтра избыточных вершин служит для фильтрации близлежащих пикетов, получаемых при проходе по одним и тем же узлам сетки на разных стереопарах;

Прореживание пикетов выполняется после завершения процедуры расчета пикетов, исходя из заданного значения радиуса в метрах.

• Предварительный расчет первого приближения — позволяет использовать результаты выполнения предварительного расчета пикетов, параметры которого задаются с помощью кнопки Настройка.

Предварительный расчет рекомендуется выполнять для автоматического поиска пикетов на космических сканерных изображений.

- Дополнительный проход по обратной стереопаре служит для использования дополнительного прохода при расчете пикетов, во время которого производится поиск соответствующих точек на левом снимке для точек на правом снимке (при основном проходе производится поиск точек на правом снимке для точек на левом);
- Неиспользуемая граничная область снимка (в процентах) позволяет не учитывать при расчете пикетов заданный процент полей снимка;
- Максимальный поперечный параллакс позволяет задать ограничение для отбраковки точек по значению поперечного параллакса (в пикселах).

Точка, полученная в результате корреляции, имеет 4 координаты — (*XL*, *YL*) на левом снимке и (*XR*, *YR*) на правом снимке. Для расчета поперечного параллакса производится преобразование координат со снимков в систему координат проекта и обратно,

в результате чего получается две пары новых координат (XL_2, YL_2) и (XR_2, YR_2) . В

этом случае параллакс рассчитывается как $Y_{PAR} = (YR - YL) - (YR_2 - YL_2)$. Отбраковываются точки со значением Y_{PAR} больше заданного. Этот параметр следует подбирать экспериментально, особенно в проектах сканерной съемки.

5. Нажмите ОК для завершения настройки параметров конфигурации коррелятора.

4.3.4. Дополнительные параметры коррелятора

Для настройки дополнительных параметров коррелятора для выбранного прохода в окне **Редактирование конфигурации** служит кнопка **Дополнительно**, которая открывает окно **Дополнительно: Проход №**.

Параметры автокорреляции					
Полуразмеры маски	10	X×	10	∕₄	пикс
Полуразмеры области поиска	10	×	1	1/1	пикс
Параметры контраста					
🔽 Минимальный контраст маски					
Полуразмеры маски	5	×	5	1/1	пикс
Минимальный контраст		5.0	*		
Прочее					
Уровень пирамиды		0	14		
🕅 Иерархический коррелятор					
		[

Рис. 12. Дополнительные параметры для выбранного прохода

Раздел Параметры автокорреляции позволяет задать дополнительные параметры для автокорреляции:

- Полуразмеры маски половина линейного размера маски для автокорреляции в пикселах по осям X и Y. Значение по умолчанию — 10x10 пикселов;
- Полуразмеры области поиска половина размера области, в которой строится поверхность автокорреляции.

Раздел Параметры контраста позволяет учесть контрастность для малоконтрастных снимков. Установите флажок Минимальный контраст маски и задайте следующие параметры:

- Полуразмеры маски половина размера области вокруг точки, в которой производится расчет контраста;
- Минимальный контраст значение в диапазоне от 0 до 100.

Параметр **Уровень пирамиды** позволяет выполнить корреляцию между прореженными изображениями и используется в следующих случаях:

Значение 0 соответствует исходному изображению, в остальных случаях используется уровень пирамиды с заданным номером.

- для пленочных материалов с «сильным зерном», которые мешают надежной работе коррелятора;
- на поверхностях рельефа типа полей, имеющих в исходной детализации случайные нерегулярные детали (трава, мелкие кусты), либо регулярный узор (свежевспаханное поле), на которых при уменьшении масштаба проявляются сопоставимые на левом и правом снимках текстуры;
- для исключения мелких объектов на рельефе (кусты, отдельные деревья, дома).
 В этом случае прореживание совместно с увеличением размера маски приводит к тому, что даже если центр маски приходится на выступающий объект, результирующая координата Z пикета соответствует высоте окружающего рельефа.

В качестве проходов одного и того же расчетного процесса целесообразно использовать настройки коррелятора, отличающиеся не более чем на один уровень пирамиды (например, 0 и 1; 2 и 3), иначе на участках с мелкими деталями (в частности, домами), возможно появление «шахматных» сеток из чередующихся точек на высоте объекта и на высоте рельефа.

Флажок Иерархический коррелятор позволяет использовать различные уровни пирамиды для корреляции при поиске соответственных точек.

4.3.5. Параметры расчета первого приближения

В системе предусмотрена возможность использования цифровой модели рельефа первого приближения при проходах коррелятора. Такой ЦМР является TIN, созданной по прореженному набору пикетов.

ЦМР первого приближения позволяет для каждой точки основного процесса существенно уменьшить область поиска, то есть сократить общее время поиска и снизить вероятность появления ошибочных точек.

В предустановленных конфигурациях коррелятора расчет первого приближения используется в конфигурации *«Горная местность»*.

Для использования и настройки параметров расчета ЦМР первого приближения выполните следующие действия:

1. В окне **Редактирование параметров** конфигурации коррелятора установите флажок **Предварительный расчет первого приближения**. 2. Нажмите на кнопку Настройка. Открывается окно Построение первого приближения: «название конфигурации».

🕏 Построение первого при	ближения: Озерный край				_ 🗆 X
Шаг ЦМР первого приближени	IA:				
больше шага основной сет	ки в 🛛 🛛 🚺 раз, но не мене	•	500 🌠	пикс	
🥅 Порог фильтра ЦМР перво	го приближения 0.6	14			
Увеличение области поиска	10 🔀 ×	1	🖌 пикс		
Проходы коррелятора					
+	Проход Полуразмеры корреляционной маски	10	🖌 × 10	🚺 пикс	
	Увеличение области поиска	5	🖌 x 1	🍾 пикс	
	Порог корреляции	ſ	0.7 🍾		
	🔽 Область поиска контрастной точки	5	🖌 x 5	🏂 пикс	
	🔽 Контроль автокорреляции				
	Максимальный радиус автокорреляци	1И	30.0 🏌	пикс	
				Дополните	льно
			ОК	0	тмена

Рис. 13. Параметры расчета первого приближения

- 3. Задайте Шаг ЦМР первого приближения для определения шага создаваемой ЦМР.
- [опционально] Для использования пороговой фильтрации при построении ЦМР установите флажок Порог фильтра ЦМР первого приближения. Задайте значение, которое соответствует порогу фильтрации промежуточной TIN по минимальному углу наклона нормали, приведенному к диапазону (0;1).
- 5. В полях **Увеличение области поиска** задайте количество пикселов дополнительного увеличения области поиска больше значений, заданных в основных параметрах проходов коррелятора.
- Список Проходы коррелятора и параметры в панели Проход позволяют определить конфигурацию коррелятора для предварительного расчета пикетов (см. описание основных параметров в разделе 4.3.3).

Кнопка **Дополнительно...** позволяет задать дополнительные параметры выбранного прохода.

7. Нажмите ОК, чтобы вернуться в окно Редактирование параметров.

4.3.6. Расчет пикетов в режиме распределенной обработки

Для расчета пикетов в режиме распределенной обработки выполните следующие действия:

- 1. Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).
- 2. Выберите ЦМР > Пикеты > Расчет пикетов. Открывается окно Расчет пикетов.

 Если ранее не была создана сетка узлов, она создается автоматически на весь блок изображений и открывается окно Свойства сетки для определения параметров сетки.

- 3. Настройте параметры автоматического расчета пикетов.
- 4. Нажмите на кнопку Распределенная обработка. Открывается окно Расчет пикетов: распределенная обработка.

📌Расчет пикетов: распределенная обработка 🛛 🗙					
Делить на задачи					
По стереопарам					
С По прямоугольным областям 1000 <u>×</u> × 1000 <u>×</u> m					
Количество задач для расчета пикетов 2					
Рабочая папка					
Перед выполнением операции все ресурсы из рабочей папки будут удалены!					
ОК Отмена					

Рис. 14. Параметры распределенной обработки расчета пикетов

- 5. В разделе **Делить на задачи** установите способ разделения процесса обработки на задачи:
 - По стереопарам позволяет обрабатывать каждую стереопару в отдельной задаче;

Так как задачи выполняются независимо друг от друга, удаление точек, попадающих в одни и те же узлы сетки с разных стереопар (например, при фильтрации близлежащих точек), при этом не производится.

По прямоугольным областям — в полях задаются размеры прямоугольников, на которые делится вся область поиска (в метрах). Фильтрация близлежащих пикетов в этом случае выполняется. Результат работы каждой задачи сохраняется в файл с именем вида Sheet X Y.x-data.

Прямоугольник, описанный вокруг границ сетки в системе координат проекта, разбивается на прямоугольные листы заданного в полях размера. Каждый лист набирается со всех стереопар, на которые он попадает.

При обработке стереопар в отдельных задачах необходима дальнейшая ручная корректировка данных в стереорежиме. Рассчитанные пикеты сохраняются в ресурсах, названных по именам стереопар.

В поле **Количество задач для расчета пикетов** отображается рассчитанное количество задач в зависимости от выбранного способа разделения процесса и/или размера заданных областей. При расчете значения не учитываются вспомогательные задачи.

Задать количество задач вручную невозможно.

6. В разделе **Рабочая папка** нажмите на кнопку ____ и выберите **пустую** папку в ресурсах активного профиля для сохранения выходной матрицы высот.

По умолчанию задается вложенная папка в папке \Data текущего проекта.

Перед выполнением операции из выбранной папки удаляются все данные. Настоятельно не рекомендуется в качестве рабочей папки указывать папку проекта, особенно в отсутствии отдельно сохраненных резервных копий проекта.

 Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

Результат каждой задачи при распределенном расчете пикетов сохраняется в отдельном файле с расширением tsk в заданной **Рабочей папке**.

4.4. Редактирование пикетов

В системе предусмотрена возможность редактирования одного или нескольких выделенных пикетов. Так как автоматически рассчитанные пикеты представляют собой точечные векторные объекты, к ним применимы все операции редактирования точек.

Для выделения векторных объектов на активном векторном слое вручную предусмотрены следующие возможности:

- двойной щелчок мыши или клавиша S для выделения одиночной полилинии/полигона;
- щелчок мыши для выделения точки/вершины (предварительно расположите маркер в окрестностях точки);
- режим выделения 🔲 Прямоугольник для выделения векторных объектов внутри прямоугольника;

• режим выделения 间 Полигон для выделения векторных объектов внутри произвольного полигона.

Для выделения объектов на активном векторном слое *внутри прямоугольника* выберите **Редактирование > Групповое выделение > Прямоугольник** или нажмите на кнопку панели **Инструменты**. Нажмите и удерживайте клавишу **Shift** и «растяните» прямоугольник мышью.

Для выделения объектов *внутри произвольного полигона* выберите **Редактирование > Групповое выделение > Полигон** или нажмите на кнопку *панели* **Инструменты**. Нажмите и удерживайте клавишу **Shift**. При щелчке мыши создается первая вершина полигона и «резиновая нить», направленная в текущее положение курсора. Ввод последующих вершин осуществляется щелчком мыши. Для завершения выделения объектов полигоном дважды щелкните мышью. Чтобы прервать выделение, нажмите клавишу **Esc**.

Для быстрого переключения между режимами выделения **Полигон** и **Прямоугольник** служит контекстное меню, которое открывается с помощью горячих клавиш **Shift+F10**.

Для выделения всех объектов активного векторного слоя выберите **Редактирова**ние > Выделить все или используйте горячие клавиши Ctrl+A.

Подробное описание инструментов и режимов выделения см. в разделах «Выделение векторных объектов» руководства пользователя «Векторизация«.

Для добавления нового пикета в активный векторный слой выполните следующие действия:

- 1. Выберите **Редактирование > Режим ввода объектов > Точки** (**P**) или нажмите на кнопку **+** дополнительной панели инструментов **Векторы** для включения режима создания точек.
- 2. Установите маркер в выбранную точку на изображении в 2D-окне.
- 3. Нажмите клавишу **Insert** для добавления точки без коррелятора на установленной высоте.

Также в системе предусмотрено автоматическое позиционирование маркера на поверхность модели с помощью коррелятора. Для этого служит клавиша **Пробел**.

В случае несрабатывания коррелятора, в панели **Статус** выдается сообщение Плохая точка и раздается предупреждающий звуковой сигнал (см. руководство пользователя «Общие параметры системы»).

В системе предусмотрена возможность удаления пикетов, находящихся ближе заданного расстояния от линейных векторных объектов (см. раздел «Удаление

пикетов вокруг линейных объектов» в руководстве пользователя «Векторизация»).

Так же в системе предусмотрена возможность контроля топологии векторных объектов, то есть поиска дублирующихся пикетов или совпадений пикетов с вершинами векторных объектов. Для этого служит пункт меню **Векторы > Топология > Проверка топологии** (см. раздел «*Контроль топологии*» руководства пользователя «Векторизация»).

4.5. Фильтрация пикетов

В системе предусмотрена возможность автоматического удаления, исправления или обнаружения точек (пикетов), попавших на дома, деревья, машины, в ямы и т. п., полученных при автоматическом расчете пикетов, а также фильтрации случайных выбросов.

В настоящем документе выбросами принято называть все точки, не лежащие на поверхности рельефа (средней сглаженной поверхности).

Для редактирования автоматически рассчитанных пикетов предусмотрены следующие фильтры:

- Прореживание пикетов прореживание плотно расположенных точек с заданной степенью прореживания;
- Фильтр по Z-диапазону фильтрация точек и вершин полилиний/полигонов, Z-координата которых выходит за пределы установленного диапазона;
- Медианный фильтр по Z фильтрация точек и вершин полилиний/полигонов по маске заданного размера;
- Фильтр близлежащих точечных объектов фильтрация близко расположенных точек (находящихся ближе заданного расстояния);
- Фильтр строений и растительности фильтрация точек, попадающих на высотные объекты (дома, деревья) или в ямы, для получения слоя точек, описывающих только рельеф местности;
- Фильтр объектов на поверхности фильтрация точек, попадающих на отдельные высотные объекты или ямы характерного размера.
- Фильтр по характеристикам изображения фильтрация объектов в зависимости от характеристик растрового изображения. При подготовительном этапе (т.н. «Обучение»), оператором вручную отбираются характерные участки растра, служащие в качестве эталонных образцов при процессе фильтрации.

Набор фильтров используемых для редактирования пикетов частично совпадает с инструментами фильтрации векторных объектов (меню **Векторы » Фильтрация**, см. раздел «Фильтрация векторных объектов» руководства пользователя «Векторизация»).

4.5.1. Прореживание пикетов

В системе предусмотрена возможность удаления части автоматически рассчитанных пикетов, которые располагаются очень плотно или близко друг к другу. Для этого используется прореживание пикетов.

Для прореживания пикетов выполните следующие действия:

1. Выберите **ЦМР > Пикеты > Фильтрация > Прореживание пикетов...**. Открывается окно **Прореживание пикетов**.

衰 Прореживание пикетов		
Степень прореживания	 ·····	90%
	ОК	Отмена

Рис. 15. Параметры прореживания пикетов

- 2. С помощью ползунка задайте степень прореживания пикетов в процентах.
- 3. Нажмите ОК. В результате удаляется заданный процент точек, в порядке их влияния на качество представления рельефа (сначала удаляются наименее значимые точки).

4.5.2. Фильтр пикетов по диапазону высот

В системе предусмотрена возможность удаления точек и вершин полилиний/полигонов, Z-координата которых не попадает в заданный диапазон.

Для фильтрации объектов активного векторного слоя по диапазону высот выполните следующие действия:

1. Выберите **ЦМР > Пикеты > Фильтрация > Фильтр по Z-диапазону**. Открывается окно **Фильтр по Z-диапазону**.
| 🜻 Филі | этр по Z-диапазону | | | |
|--------|-------------------------|------|------------|--------|
| Слой | pickets_lines (Векторы) | | | |
| Zmin | 529.6496 m | Zmax | 671.3563 m | |
| Диапа: | зон фильтра | | | |
| Zmin | 535 🚺 m | Zmax | 600 🚺 m | |
| | | | | |
| | | | ОК | Отмена |

Рис. 16. Параметры фильтрации пикетов по высоте

В поле Слой отображается имя выбранного активного векторного слоя, в полях **Zmin** и **Zmax** — перепад высот в метрах, рассчитанный по всем объектам слоя.

- 2. В разделе **Диапазон фильтра** по умолчанию отображаются значения рассчитанного перепада высот. Задайте максимальное и минимальное значения Z в метрах для фильтрации точек.
- Нажмите ОК. В результате фильтрации удаляются все точки и вершины полилиний/полигонов, Z-координата которых не попадает в заданный диапазон. После окончания процесса фильтрации выдается информационное сообщение о количестве удаленных точек.

Проверка и отбраковка по Z-диапазону предусмотрена также при автоматическом расчете пикетов.

4.5.3. Медианный фильтр пикетов по высоте

В системе предусмотрена возможность медианной фильтрации для удаления одиночных резких выбросов на фоне плавного рельефа.

Принцип *медианной фильтрации* заключается в следующей последовательности действий:

- 1. Последовательное сканирование площади с векторными объектами окноммаской. Шаг сканирования определяется как полуразмер окна-маски.
- 2. Удаление точек, высота которых не попадает в диапазон.

Диапазон рассчитывается как средний уровень высоты векторов, попадающих в маску. При расчете диапазона учитывается заданное отклонение от среднего уровня.

Для применения медианного фильтра выполните следующие действия:

1. Выберите **ЦМР > Пикеты > Фильтрация > Медианный фильтр по Z**. Открывается окно **Медианный фильтр по Z**.

Рис. 17. Параметры медианной фильтрации пикетов

- 2. В поле **Размер маски** задайте размер стороны сканирующего квадратного окна-маски в метрах.
- 3. В поле **Допустимое отклонение от среднего уровня** задайте отклонение по Z в метрах от среднего уровня высоты объектов в маске.
- Нажмите ОК. В результате фильтрации удаляются все точки и вершины полилиний/полигонов, Z-координата которых не попадает в заданный диапазон. После завершения процесса фильтрации выдается информационное сообщение о количестве удаленных точек.

4.5.4. Фильтр близлежащих точечных объектов

Фильтр близлежащих точечных объектов позволяет удалить пикеты, рядом с которыми находятся другие объекты ближе заданного расстояния.

Для фильтрации близкорасположенных пикетов активного слоя выполните следующие действия:

1. Выберите **ЦМР** > **Пикеты** > **Фильтрация** > **Фильтр близлежащих точечных объектов**. Открывается окно **Фильтр близлежащих точечных объектов**.

뤚 Фильтр близ	лежащих точечны	их объектов		
Радиус	1.0	м		
🗌 Из несколы	ких близлежащих об	ъектов, удалять объ	екты с меньшим значен	нием атрибута:
			ОК	Отмена

Рис. 18. Параметры фильтрации близкорасположенных пикетов

- 2. Задайте значение **Радиуса** максимальное расстояние в метрах до каждого пикета, ближе которого пикет удаляется.
- [опционально] Чтобы удалить из двух пикетов только тот, который содержит наименьшее значение одного из атрибутов (например, если векторный слой пикетов создавался в режиме автоматического расчета пикетов с сохранением

оценок качества в атрибуты), установите флажок Из нескольких близлежащих объектов, удалять объекты с меньшим значением атрибута и выберите в списке атрибут для учета его значений при удалении пикетов.

4. Нажмите ОК. В результате фильтрации удаляются пикеты, расстояние между которыми меньше заданного. После окончания процесса фильтрации выдается информационное сообщение о количестве удаленных точек.

4.5.5. Фильтр строений и растительности

В системе предусмотрена возможность удаления, исправления или обнаружения пикетов, попавших на дома, деревья, машины, в ямы, полученных при автоматическом расчете пикетов, а также фильтрации случайных выбросов. Для этого служит фильтр строений и растительности, в результате работы которого остаются только пикеты, описывающие рельеф местности.

В настоящем документе все точки, не лежащие на поверхности рельефа (средней сглаженной поверхности), принято называть *выбросами*.

Фильтр строений и растительности позволяет применить поэтапную фильтрацию точек по определенному сценарию, то есть применить фильтрацию пикетов в несколько проходов с различными наборами параметров.

Существует возможность разработки собственного сценария работы фильтра или использования сценария, предложенного по умолчанию. Разработка сценария работы фильтра строений и растительности заключается в определении набора проходов, порядка их прохождения и настройки параметров для каждого прохода.

Поэтапная работа фильтра позволяет добиться оптимальных результатов фильтрации объектов на той или иной местности для получения пикетов, верно описывающих рельеф местности, на основании которых строится качественная матрица высот.

По умолчанию для фильтрации используется стандартный сценарий из трех проходов в следующем порядке:

- Основной основной проход с настройкой параметров для фильтрации точек, не лежащих на поверхности рельефа (выбросов). На этом этапе отбраковывается большинство точек на домах, а также грубые ошибки коррелятора (резкие выбросы).
- 2. **Дополнительный** дополнительной проход с настройкой параметров для поиска выбросов, пропущенных на основном этапе.
- 3. **Детальный** (по умолчанию отключен) проход с настройкой параметров для фильтрации точек на невысоких объектах, например, на небольших строениях, машинах и так далее.

В результате фильтрации возможны следующие действия с найденными точками (выбросами):

- удаление выбросов из исходного слоя пикетов;
- исправление найденных выбросов в исходном слое пикетов, которое заключается в редактировании координат высот выбросов;
- поиск выбросов для анализа с сохранением найденных точек в новые векторные слои без изменения исходного слоя пикетов.

🚔 Фильтр строений и ј	растительности							_ 🗆 🗙
Слой auto_pts_5m_filtere	Констры) только к выделенным о на новые слои перед уды	бъектам алением или исправлением	Проход Имя Средн Расче	Основной нее расстояние между пикетами в тное расстояние между пикетами	а слое 5.5 1 5.5 Ближне	i16558 i1655842 🔀 e	м м Дальнее	
 Удалить все Удалить вблизи гр Только отметить 	оаницы	Расстояние до границы 50 🔏 м	Рассто Отфил	яние взаимного влияния точек ьтровывать выбросы	16.549675 Вверх	22 12	100.0 🍂 Вниз	м
Пересчитывать пар слое Проходы фильтра	аметры к среднему рас	тоянию между пикетами в	Только Угол на острых Максим	о острые выбросы аклона для определения « выбросов мальная площадь	30	*	30 X	•
Проход Сновной Сновной Словной Сновной Сновной Сновной	Надежные выбросы Удалить Удалить Удалить	Сомнительные выбросы Удалить Удалить Удалить Удалить	плоски Радиус сглажи Допуст сглаже	их выбросов с промежуточного ивания тимое отклонение пикета от енной поверхности	17 0.5516558	X X	55 X	м^2 м
			Максин наклон Действия Надежн	чальная площадь нных выбросов я ю исправляемые выбросы	Сом	10000	м^2]
 Использовать все д	Скрыть п оступные ядра ЦПУ	араметры прохода <<	© Уда. С Испр С Проз	лить Эавить Верить		Идалить Исправить Проверить ОМ		Отмена

Рис. 19. Параметры фильтрации строений и растительности

Окно **Фильтр строений и растительности** позволяет задать параметры фильтрации и настроить количество проходов фильтра. В поле **Слой** отображается имя активного векторного слоя. Окно содержит панель стандартных инструментов.

Кнопки	Назначение
	позволяет загрузить сценарий работы фильтра из ресурса *.x-filter вне ресурсов активного профиля
57	позволяет загрузить сценарий работы фильтра из pecypca *.x-filter в pecypcax активного профиля
	позволяет сохранить текущий сценарий работы фильтра в ресурсе *.x-filter вне ресурсов ак- тивного профиля

Кнопки	Назначение
	позволяет сохранить текущий сценарий работы фильтра в ресурсе *.x-filter в ресурсах актив- ного профиля
N I	позволяет отменить все изменения, внесенные в сценарий
ξ.	позволяет вернуться к стандартному сценарию из двух проходов с настройками по умолчанию (независимо от того, какой сценарий был загру- жен)

Для фильтрации объектов на поверхности выполните следующие действия:

1. Загрузите пикеты для фильтрации или сделайте слой с пикетами активным.

Во избежание потери данных рекомендуется использовать копию исходного слоя при фильтрации.

Для создания копии выберите **ЦМР > Пикеты > Сохранить как** и задайте новое имя файла пикетов.

При наличии в слое линейных или площадных векторных объектов возможна некорректная работа фильтра.

2. Выберите ЦМР > Пикеты > Фильтрация > Фильтр строений и растительности. Открывается окно Фильтр строений и растительности.

🌲 Фильтр строений и р	👼 Фильтр строений и растительности 📃 🗖 🔀				
🖻 🌮 🖬 🖼 🗠	κ,				
Слой auto_pts_5m_filtere	d (Векторы)				
Применять фильтр т	голько к выделенным об	ъектам			
🔽 Копировать пикеты	в новые слои перед уда	элением или исправлением			
Непроверяемые пикеть	əl				
Удалить все		Расстояние до границы			
О Удалить вблизи гр.	аницы	50 🌠 M			
С Только отметить					
Пересчитывать пара слое	аметры к среднему расс	тоянию между пикетами в			
Проходы фильтра					
+ - 🕹 🏠					
Проход	Надежные выбросы	Сомнительные выбросы			
🔽 Основной	Удалить	Удалить			
🗹 Дополнительный	Удалить	Удалить			
🗌 Детальный	Удалить	Удалить			
r.	-				
Показать параметры прохода >>					
🔽 Использовать все доступные ядра ЦПУ					
ОК Отмена					

Рис. 20. Параметры фильтрации строений и растительности

3. [опционально] Чтобы использовать фильтрацию для выделенных объектов (группы точек), установите флажок **Применять фильтр только к выделенным объектам**. Иначе фильтр применяется ко всем точкам слоя.

Для фильтрации группы точек, выделите ее мышью в 2D-окне перед запуском настройки Фильтра строений и растительности.

При использовании фильтра только для выделенных объектов не рекомендуется устанавливать **Удалить вблизи границы** в разделе **Непроверяемые пикеты**.

4. [опционально] Для увеличения быстродействия процесса фильтрации снимите флажок Копировать пикеты в новые слои перед удалением или исправлением. По умолчанию в системе сохраняются удаленные или исправленные пикеты в новых векторных слоях для анализа результатов фильтрации. Эти слои могут быть использованы для восстановления базового слоя пикетов (с помощью объединения слоев), если не была создана копия исходного слоя пикетов перед началом фильтрации.

При снятом флажке Копировать пикеты в новые слои перед удалением или исправлением настоятельно не рекомендуется применять фильтрацию на исходный слой с пикетами, так как восстановить исходный слой после фильтрации невозможно.

5. В разделе **Непроверяемые пикеты** определите одно из следующих действий с непроверяемыми пикетами, найденными в результате фильтрации:

При фильтрации некоторые точки могут оказаться *непроверяемыми* — это точки, в окрестности которых недостаточно «соседних» точек, например, на краю всего слоя или в местах малой плотности точек (поля, леса, водные объекты).

- Удалить все позволяет удалить все найденные непроверяемые пикеты;
- Удалить вблизи границы позволяет задать в поле Расстояние до границы значение расстояния в метрах от края всего векторного слоя, при котором будут удаляться непроверяемые пикеты;
- Только отметить позволяет сохранить непроверяемые пикеты в отдельном векторном слое для последующего анализа.
- 6. [опционально] Значения среднего расстояния между пикетами в активном слое вычисляются в системе автоматически. Также расчетное расстояние между пикетами по умолчанию равно среднему расстоянию. Снимите флажок Пересчитывать параметры к среднему расстоянию между пикетами в слое, чтобы задать расчетное расстояние между пикетами вручную.
- 7. Задайте количество проходов фильтра:

- по умолчанию используется два прохода со стандартными параметрами Основной и Дополнительный. Снимите флажки для изменения состава проходов.
- кнопка + позволяет добавить новый проход фильтра;
- кнопка позволяет удалить выделенный проход фильтра;
- кнопки 🖶 и 🕆 позволяют переместить вверх/вниз выделенный проход.

Раздел **Проходы фильтра** содержит таблицу проходов и кнопки для изменения набора проходов и порядка их следования со следующими столбцами:

- Проход отображается имя прохода и флажок для включения прохода в сценарий/исключения прохода из сценария работы фильтра;
- Надежные выбросы отображается действие для найденных однозначных выбросов полностью удовлетворяющих заданным критериям фильтрации;
- Сомнительные выбросы отображается действие для найденных неоднозначных выбросов, в окрестностях которых недостаточно данных для анализа.

Выбор действия для надежных и сомнительных выбросов осуществляется при настройке параметров прохода.

 8. Выделите имя прохода и нажмите на кнопку Показать параметры прохода
 > Открывается раздел Проход для отображения и настройки следующих параметров прохода фильтра:

🚔 Фильтр строений и растительности					
© ⊅ 🗄 🖥 🗠 🗞		Проход			
Слой auto_pts_5m_filtered (Векторы)		Имя Основной			
Применять фильтр только к выделенным объ	ектам	Среднее расстояние между пикетами в	s слое 5.516556	1	
🔽 Копировать пикеты в новые слои перед удал	ением или исправлением	Расчетное расстояние между пикетами	5.51655842	м -	
Непроверяемые пикеты			ьлижнее	Дальнее	
 Удалить все 	асстояние до границы	Расстояние взаимного влияния точек	16.5496752	100.0	м
Удалить вблизи границы	50 🏂 м		Вверх	Вниз	
О Только отметить		Отфильтровывать выбросы			
— Пересциятырать параметры и среднему расст		Только острые выбросы			
слое Проходы фильтра		Угол наклона для определения острых выбросов	30	30	°
+ - 🖟 🕆		Максимальная площадь плоских выбросов	40000	10000	м^2
Проход Надежные выбросы	Сомнительные выбросы	Радиус промежуточного			
✓ Основной Удалить	и далить И далить	сглаживания	17	55 🏂	м
Детальный Удалить	/далить	Допустимое отклонение пикета от	0.55165584; 💅	0.55165584; 🖌	м
		Максимальная плошаль	, 2		
		наклонных выбросов	10000	м^2	
		Действия			
		Надежно исправляемые выбросы	Сомнительные	зыбросы	
		• Удалить	📀 Удалить		
Скрыть пар	аметры прохода <<	О Исправить	О Исправить		
Использовать все доступные ядра ЦПУ		О Проверить	О Проверить		
				ж о	тмена

Рис. 21. Параметры фильтрации строений и растительности

- [опционально] чтобы изменить название прохода фильтрации, введите его в поле Имя;
- в полях отображается рассчитанное Среднее расстояние между пикетами в слое в метрах и Расчетное расстояние между пикетами в метрах после фильтрации;
- задайте Ближнее и Дальнее расстояние взаимного влияния точек в метрах для определения радиуса окружности, в области которой значения отметок пикетов анализируются на предмет ошибок;
 - √m)

Ближнее расстояние взаимного влияния точек — средний радиус окружности, в области которой расположены точки, описывающие одну и ту же плоскую поверхность, возвышающуюся над рельефом (например — плоскую крышу здания).

Дальнее расстояние взаимного влияния точек — среднее расстояние от точек, описывающих плоскую поверхность, возвышающуюся над рельефом, на котором гарантированно расположены точки, описывающие рельеф местности.

Для ближнего расстояния (минимального радиуса окружности) рекомендуется устанавливать значение, составляющее 3-5 величин параметра **Среднее рассто-яние между пикетами в слое**.

Рис. 22. Ближнее расстояние взаимного влияния точек (а), дальнее расстояние взаимного влияния точек (b)

- задайте следующие параметры отбраковки Вверх (над поверхностью) и/или Вниз (под поверхностью):
 - Отфильтровывать выбросы позволяет выбрать пикеты для фильтрации: пикеты на поверхности (высотные объекты) и/или пикеты под поверхностью (ямы);

Для работы фильтра необходимо установить хотя бы один флажок.

 Только острые выбросы — служит для фильтрации только острых выбросов над/под поверхностью, которые определяются значениями параметров Угол наклона для определения острых выбросов и Расстояние взаимного влияния пикетов, остальные параметры не учитываются;

Если угол между тремя точками превышает значение параметра Угол наклона для определения острых выбросов, то выброс принято называть острым.

- Угол наклона для определения острых выбросов позволяет задать угол наклона относительно выбранной отсчетной поверхности (над и/или под поверхностью) для определения острых выбросов;
- Максимальная площадь плоских выбросов позволяет определить максимальную площадь плоских выбросов (над/под поверхностью) групп точек, образующих гладкие поверхности и отстоящих от некой

плоскости соседних точек. Как правило, это точки на крышах зданий, лежащие в одной плоскости;

- К плоской поверхности, площадь которой больше заданной величины, фильтр не применяется.
- Радиус промежуточного сглаживания позволяет задать радиус сферы (над/под поверхностью), определяющий степень промежуточного сглаживания поверхности;
- Допустимое отклонение пикета от сглаженной поверхности позволяет определить критерий, по которому ко всем пикетам, отметки которых отличаются от сглаженной поверхности более чем на заданную величину, применяется фильтр;
- Максимальная площадь наклонных выбросов позволяет определить максимальную площадь наклонных выбросов (над/под поверхностью) групп точек, образующих наклонную поверхность (на склонах).

Кнопка колозволяет вернуться к стандартному сценарию из двух проходов со всеми настройками по умолчанию (независимо от того, какой сценарий был загружен).

- 9. В разделе **Действия** установите действия для найденных в результате фильтрации на каком-либо этапе надежных и сомнительных выбросов:
 - Удалить удаление найденных пикетов из базового слоя пикетов;
 - Исправить редактирование координат высот найденных точек в базовом слое;
 - **Проверить** сохранение найденных пикетов в новом слое без изменения базового слоя.

Надежно исправляемые выбросы — найденные однозначные выбросы, полностью удовлетворяющие всем заданным критериям фильтрации.

Сомнительные выбросы — неоднозначные выбросы, в окрестностях которых недостаточно данных для анализа на предмет фильтрации.

При установленном **Удалить** или **Исправить** происходит редактирование базового слоя пикетов.

Для сохранения удаленных или исправленных пикетов в новых слоях рекомендуется установить флажок Копировать пикеты в новые слои перед удалением или исправлением. При установленном **Проверить** исходный слой пикетов остается без изменений, а найденные надежные или сомнительные выбросы копируются в новый слой *Выбросы*.

- [опционально] Чтобы использовать для вычислений все ядра процессора рабочей станции, в системе по умолчанию установлен флажок Использовать все доступные ядра ЦПУ. Снимите флажок для использования только одного ядра.
- 11. Нажмите ОК. Запускается процесс фильтрации матрицы высот. После окончания процесса фильтрации выдается информационное сообщение о количестве задействованных базисных точек и отфильтрованных пикетов.

Существуют следующие рекомендации по использованию фильтра строений и растительности:

- рекомендуется использовать поэтапную фильтрацию (в несколько проходов с разными наборами параметров);
- проходы следует формировать в порядке увеличения следующих параметров: расстояния взаимного влияния, радиуса промежуточного сглаживания, а так же уменьшения допустимого отклонения пикета от сглаженной поверхности;
- величина радиуса промежуточного сглаживания непосредственно описывает характер рельефа местности, поэтому радиус следует задавать не более 1500 м;
- рекомендуется предварительно проанализировать максимальную площадь плоских выбросов на данной территории (измерить в окне стереопары) и сравнить ее с площадью, автоматически рассчитанной для проходов. В случае если измеренная площадь больше рассчитанной, ее следует увеличить;
- настоятельно не рекомендуется задавать расстояние взаимного влияния пикетов более чем в 20 раз превышающим шаг между пикетами, так как это приводит к значительному замедлению процесса фильтрации.

4.5.6. Фильтр объектов на поверхности

В системе предусмотрена возможность исправления грубых ошибок корреляции, полученных при автоматическом расчете пикетов. Фильтрация позволяет удалить точки, расположенные на поверхности, с заданным характерным размером в плане и по высоте.

Данный вид фильтрации не распространяется на объекты сплошной застройки, лесополосы и подобные объекты.

Принцип фильтрации заключается в оценке расположения и размера горизонталей, построенных по TIN, для создания которой были использованы исходные пикеты. Выбросом считается группа горизонталей не больше заданного размера в плане и с разбросом по Z в пределах заданного диапазона.

Фильтр объектов на поверхности рекомендуется для устранения грубых выбросов. Для более детальной фильтрации рекомендуется использовать данный фильтр совместно с фильтром строений и растительности.

Для применения фильтра объектов на поверхности выполните следующие действия:

1. Выберите **Векторы > Фильтрация > Фильтр объектов на поверхности**. Открывается окно **Фильтр объектов на поверхности**.

🜻 Фильтр объектов на поверхности		
Характерный размер объекта в плане	15.0	м
Характерная высота/глубина объекта	5.0	м
	ок	Отмена

Рис. 23. Параметры фильтрации объектов на поверхности

- 2. Задайте Характерные размеры объекта в плане и по высоте/глубине объекта в соответствующие поля в метрах.
- 3. Нажмите ОК для удаления найденных пикетов.

4.5.7. Фильтр по характеристикам изображения

В системе предусмотрена возможность фильтрации объектов в зависимости от характеристик растрового изображения. При подготовительном этапе (т.н. «Обучение»), оператором вручную отбираются характерные участки растра (на приведенных в качестве примера изображениях - области покрытые лесом), служащие в качестве эталонных образцов при процессе фильтрации.

Для фильтрации выполните следующие действия:

- 1. Сделайте активным слой с векторными объектами;
- Выделите изображение, по характеристикам которого будет произодиться фильтрация, в 2D-окне или окне Редактор блока. Выберите Окна > Новое 2D-окно (стереопара) (Ctrl+Alt+W) или нажмите на кнопку посновной панели инструментов. Открывается 2D-окно стереопары;

Функция работает корректно только в стерео-режиме.

3. Выберите **ЦМР** > **Пикеты** > **Фильтрация** > **Фильтр по характеристикам** изображения. Открывается окно **Фильтр по характеристикам изображения**;

😔 Фильтр по характеристикам рас	тра			
🗁 🖩				
Параметры				
Размер пиксела 🏼 🇯	Полуразмер маски 50			
Обучение				
Добавить Число образцов	0 Удалить последний Удалить все			
Проверить	Допустимое отличие 15			
Статистика				
Собрать Активный слой	TestPoints (Векторы)			
Очистить				
Фильтр				
🔲 Рассчитывать контура 🛛 Пр	опустить контура габаритами менее 0.0 🌰 м			
🗹 Удалить отфильтрованные точки				
Фильтровать				

Рис. 24. Параметры фильтрации по характеристикам изображения

- В разделе Параметры задайте Полуразмер маски половина размера области вокруг пикета, в которой производится расчет характеристик изображения;
- 5. Наведите маркер на характерную область растра и нажмите на кнопку **Добавить** в разделе **Обучение**.

Кнопка **Удалить последний** служит для удаления последнего отобранного образца, кнопка **Удалить все** служит для удаления всех отобранных образцов.

	😎 Фильтр по характеристикам растра
and the second s	Параметры
	Размер пиксела 1 👘 Полуразмер маски 50 👘
	Обучение
	Добавить Число образцов 4 Удалить последний Удалить все
	Проверить Допустимое отличие 15 👘
A CONTRACTOR	Статистика
	Собрать Активный слой TestPoints (Векторы)
	Очистить
A MARK	Фильтр
	📄 Рассчитывать контура 📄 Пропустить контура габаритами менее 🛛 0.0 🚔 м
	💟 Удалить отфильтрованные точки
	Фильтровать

Рис. 25. Отбор характерных участков растра (фильтрация пикетов на территории леса)

 Повторите действия описанные в пункте 2 несколько раз, меняя позицию маркера.

Для проверки обучения наведите маркер на область растра, отличающуюся от эталонной (или наоборот - схожую с ней), и нажмите на кнопку Проверить. Результаты «-» или «+» в строке состояния сигнализируют о совпадении или несовпадении характеристик тестируемого участка с полученными в процессе обучения эталонами.

7. В разделе статистика нажмите на кнопку Собрать. В окрестностях каждого пикета, в пределах размера полумаски, для каждого из цветовых каналов рассчитываются 6 параметров, отображающих статистические характеристики распределения яркости пикселей. Полученные данных записываются в атрибуты каждого из пикетов;

Для просмотра собранных данных выделите пикет и выберите Окна · Атрибуты объектов.

- [опционально] Установите флажок Рассчитывать контуры, для автоматического создания полигонов вокруг областей содержащих отфильтрованные точки;
- [опционально] Для создания контурных полигонов только вокруг крупных областей содержащих отфильтрованные точки установите флажок Пропустить контура габаритами менее и задайте минимальный размера полигона в метрах;

- 10. [опционально] Снимите флажок Удалить отфильтрованные точки, если необходимо.
- При установленном флажке отфильтрованные точки будут автоматически удалены после завершения процесса фильтрации, при снятом автоматически выделены для дальнейших операций.
- 11. Нажмите кнопку **Фильтровать** для запуска процесса фильтрации точек расположенных на характерных областях растра.

an a	😎 Фильтр по характеристикам растра	
		٦
Contraction of the second	Параметры	-
	Размер пиксела 1 х Полуразмер маски 50 х	
	Обучение	Ξ
1	Добавить Число образцов 4 Удалить последний Удалить все]
State and and	Проверить Допустимое отличие 15 🔺	
A BARAN	Статистика	=
A DE DE CO	Собрать Активный слой TestPoints (Векторы)]
	Очистить	
	Фильтр	=
	🔲 Рассчитывать контура 📄 Пропустить контура габаритами менее 🛛 0.0 🚊 м	
- No. As	📝 Удалить отфильтрованные точки	
	Фильтровать	

Рис. 26. Векторный слой с удаленными пикетами после фильтрации по характеристикам растра

ALL TO BE ALL TO	😎 Фильтр по характеристикам растра
and the second se	
	Параметры
	Размер пиксела 1 👘 Полуразмер маски 50 🕅
	Обучение
	Добавить Число образцов 4 Удалить последний Удалить все
	Проверить - Допустимое отличие 15 📩
	Статистика
	Собрать Активный слой Границы областей (Векторы (2))
	Очистить
Martin and the	Фильтр
All and the	🗑 Рассчитывать контура 📝 Пропустить контура габаритами менее 50.0 👘 м
A CARLES AND A CAR	🔲 Удалить отфильтрованные точки
	Фильтровать

Рис. 27. Векторный слой с выделенными пикетами и построенными контурами после фильтрации по характеристикам растра

5. Нерегулярная пространственная сеть треугольников (TIN)

5.1. Меню «TIN»

Меню **TIN** содержит стандартные пункты меню для загрузки и сохранения слоев TIN, а также для выполнения различных операций по построению, редактированию и контролю точности построения TIN.

Меню TIN расположено в меню ЦМР.

Меню TIN	Назначение
Открыть TIN (Ctrl+O, T)	позволяет загрузить TIN из файла *.x-tin
Предыдущие	позволяет осуществить быстрый доступ к последним загруженным файлам TIN
Сохранить	позволяет сохранить или перезаписать активный слой TIN в виде файла с расширением *.x-tin
Сохранить как	позволяет сохранить активный слой TIN под но- вым именем в виде файла с расширением *.x- tin
Закрыть	позволяет закрыть слой с TIN
Закрыть все открытые слои	позволяет закрыть все слои с TIN
Видимость слоев	содержит пункты меню, позволяющие осуще- ствлять групповое управление видимостью слоев TIN в <i>Диспетчере слоев</i>
📉 Построить (Ctrl+N, T)	позволяет построить TIN по загруженным базо- вым слоям
Восстановить	позволяет восстановить TIN по исходным гори- зонталям
Рассчитать границу	позволяет построить границы TIN в автоматиче- ском режиме
🎇 Перетриангулировать	позволяет перестроить TIN после редактирова- ния объектов базового слоя
Контроль по точкам триангуляции	служит для контроля точности построения TIN по точкам триангуляции
Контроль по векторным объектам	служит для контроля точности построения TIN по векторным объектам, которые не использова- лись при построении TIN
Проверка топологии	служит для проверки топологии построения TIN
Площадь полигона на поверхности	позволяет вычислить площадь поверхности TIN в пределах полигона
Посчитать площадь	позволяет вычислить площадь проекции TIN на плоскость и площадь 3D поверхности TIN

Таблица 3. Краткое описание меню «TIN»

Меню TIN	Назначение
Статистика	служит для просмотра статистической информа- ции о TIN
Прореживание	служит для прореживания вершин треугольников TIN с помощью прореживания точечных вектор- ных объектов в базовых слоях, по которым по- строен TIN
Фильтр выбросов	служит для фильтрации выбросов — поиска вершин TIN, значение Z которых значительно отличается от соседних вершин
Фильтр по Z-диапазону	служит для редактирования TIN с использованием фильтра по высоте
Интерполировать	позволяет интерполировать TIN для сглаживания ЦМР с целью построения или улучшения гори- зонталей
Преобразовать в векторный слой	позволяет преобразовать TIN в векторный слой
🛃 Встроить объекты	позволяет встроить слой векторных объектов в построенный ТИН
Экспорт	содержит пункты меню для экспорта результатов построения TIN в форматы DXF и CSV
Вкл./Выкл. видимость TIN (Ctrl+T)	позволяет включить/выключить видимость редак- тируемого слоя TIN
Создать 3D-TIN по матрице высот	позволяет создать текстурированную 3D поверх- ность TIN

5.2. Общие сведения

Нерегулярная пространственная сеть треугольников (TIN, Triangulation Irregular Network) — одна из моделей пространственно-координированных данных, которая используется при конструировании цифровой модели рельефа, в виде высотных отметок в узлах нерегулярной сети треугольников, соответствующей триангуляции Делоне.

Триангуляция Делоне — треугольная полигональная сеть, образованная на множестве дискретно расположенных точек, соединенных между собой непересекающимися отрезками прямых линий таким образом, что описанная вокруг каждого треугольника окружность не содержит внутри себя точек исходного множества.

В системе также предусмотрена возможность построения *квазигоризонталей* — изолиний с заданным шагом, которые проходят через стороны треугольников TIN. При редактировании базовых слоев, содержащих векторные объекты, квазигоризонтали перестраиваются автоматически. Квазигоризонтали используются для дополнительного контроля качества построения TIN и выявления грубых ошибок.

При сохранении или загрузке TIN сохраняются/загружаются все базовые векторные слои, которые использовались при построении TIN.

При построении TIN рекомендуется использовать структурные линии — векторные полилинии вдоль характерных форм рельефа (например, как хребты и тальвеги), а также линейные объекты антропогенного происхождения (например, обочины дорог).

При создании TIN предусмотрен следующий порядок работы:

- 1. [опционально] Построение разметки.
- 2. Определение набора базовых векторных слоев.
- 3. Построение границ TIN.
- 4. Построение TIN.

Для работы с TIN предусмотрены следующие возможности:

- различные способы отображения;
- вычисление площади;
- перестроение TIN при изменении базовых слоев;
- фильтрация базовых слоев, использованных для построения TIN;
- контроль точности построения TIN;
- экспорт TIN в обменные форматы.

Рис. 28. Исходные данные для построения TIN

5.3. Создание TIN

5.3.1. Построение разметки блока

В системе предусмотрена возможность построения разметки блока по *рамкам* изображений или *рамкам стереопар* для реализации совместной обработки проекта при векторизации.

Разметка, построенная *по стереопарам*, также позволяет существенно ускорить процесс автоматического расчета пикетов и построения плотной модели рельефа за счет сокращения количества областей перекрытий изображений блока.

Разметка — векторный слой, состоящий из полигонов, отрисованных по блоку изображений.

Для построения разметки выполните следующие действия:

1. Выберите Блок > Построить разметку. Открывается окно Построение разметки.

🕏 Построение разметки	_ 🗆 X
Использовать рамки С стереопар С снимков	
 по диаграмме Вороного алгоритм версии 4.х 	
Удаление узких полос.	_
мин	иакс
OK	Отмена

Рис. 29. Параметры построения разметки

- 2. В разделе **Использовать рамки** выберите один из следующих методов построения разметки:
 - стереопар для построения разметки по областям перекрытия двух изображений стереопары;

- При использовании рамок **стереопар** происходит автоматическое заполнение атрибутов полигонов в виде: *region_image_code* (с кодом левого снимка), *region_image_name* (с именем левого снимка), region_image_code_2 (с кодом правого снимка), region_image_name_2 (с именем правого снимка).
- снимков для построения разметки по надирным областям каждого снимка.

При использовании рамок **снимков** происходит автоматическое заполнение атрибутов полигонов в виде: *region_image_code*, *region_image_name*.

- Выберите способ построения разметки по выбранным рамкам: с использованием диаграммы Вороного или алгоритма ранних версий системы (PHOTOMOD 4.x).
- 4. [опционально] Установите ползунок **Удаление узких полос** (при значении **мин** происходит построение разметки с учетом узких полос; при значении **макс** разметка строится без узких полос).
- 5. Нажмите ОК для построения разметки. Создается новый векторный слой с разметкой.

Для загрузки, редактирования, сохранения и закрытия слоя с разметкой используются стандартные инструменты работы с векторными объектами (описание см. в разделе «Редактирование векторных объектов» руководства пользователя «Векторизация»).

Рис. 30. Построение разметки по диаграмме Вороного с установкой ползунка «Удаление узких полос» в среднее положение

Рис. 31. Разметка, построенная по рамкам снимков

Рис. 32. Разметка, построенная по рамкам стереопар

5.3.2. Загрузка базовых слоев для создания TIN

Перед построением TIN необходимо определить набор базовых слоев, которые используются для создания TIN.

В системе происходит построение TIN на основе слоев, содержащих следующие данные:

- векторные объекты (точки, полилинии и полигоны);
- *структурные линии* полилинии/полигоны, нарисованные вдоль протяженных форм рельефа (бровки, хребты, тальвеги), а также вдоль дорог;
- набор регулярных пикетов точечные векторные объекты, расположенные на поверхности рельефа по регулярной сетке или в произвольном порядке;
- *точки триангуляции* связующие, контрольные, опорные точки, полученные на этапе построения сети (см. в руководстве пользователя «Построение сети»).

Для загрузки векторных объектов выполните следующие действия:

1. Выберите **Векторы > Открыть** или нажмите на кнопку 📩 основной панели инструментов. Открывается окно **Открыть**.

🕂 🔁 🖬 Имя	🗢 Разм	ер Время 🔺		
E- 123		02.10.2013 1		
backup bac	kup	24.01.2013 1		
- classifier class	sifier	03.10.2011 1		
den den	1	15.02.2013 1		
mo:	aic	24.04.2012 1		
New_folder	_folder	20.04.2012 1		
Projects Pro	ects	23.04.2012 1		
Pyramid Pyr	amid	20.04.2012 1		
roman rom	an	14.08.2012 1		
sheets she	ets	03.10.2011 1		
Features all_li	nes.x-data 11.29 M	15 23.03.2010 12		
Images all_r	ts_lines.x-data 9.22 N	15 23.03.2010 12		
- Locks	Cutlines x-data 1.58 N	15 08.04.2010 10		
H- ProjOptions				
· Тетр 🗸 🗸 Филь	rp			
I : i I Mau Zasland (ACS)				
Имя ресурса	Векторные дан	ные 💌		
🔲 Только для чтения				
при несовладении системы координат пересчитывать через:				
(• пиксельные координаты О геодезические координаты пастроика				
	Открыть	Отмена		
/Techsupport/New_Zealand_Group/New_zealand/Data	Ресурсов 19 / 32 316 928 байт (выбрано ре	сурсов 0 / 0 байт) 🏾 🏾		

Рис. 33. Загрузка векторного слоя

- 2. Выберите один или несколько векторных файлов в ресурсах активного профиля с расширением x-data.
- 3. [опционально] Чтобы запретить сохранение и перезапись выбранного файла, установите флажок **Только для чтения**.
- [опционально] Установите способ пересчета координат объектов при несовпадении системы координат — через пиксельные или геодезические координаты (подробнее см. в руководстве пользователя «Общие параметры системы»).
- 5. Нажмите на кнопку **Открыть**. Если в активном проекте уже загружен один или несколько векторных слоев, при загрузке нового слоя открывается окно выбора типа загрузки.

🜻 Загрузка 💶 🔍
Слой Векторы содержит данные.
Очистить слой и продолжить загрузку в него
Создать новый слой и продолжить загрузку данных в него
Добавить в слой Векторы новые данные, не удаляя имеющиеся
Отмена

Рис. 34. Загрузка векторного слоя

В системе предусмотрены следующие возможности загрузки нового слоя в существующий векторный слой:

- Очистить слой и продолжить загрузку в него векторные данные активного слоя заменяются данными из загружаемого слоя;
- Создать новый слой и продолжить загрузку данных в него векторные данные загружаются в новый слой;
- Добавить в слой новые данные, не удаляя имеющиеся векторные данные добавляются при загрузке к объектам активного векторного слоя.

Если в слое с векторными объектами какая-либо точка не загружается, то выдается сообщение об ошибке загрузки этой точки, при этом векторный слой загружается без координат данной точки.

При одновременной загрузке двух и более векторных файлов предлагаются следующие варианты загрузки:

- Очистить слой и загрузить все файлы в него векторные данные активного слоя заменяются данными из загружаемых слоев;
- Загрузить все в один новый слой векторные данные загружаются в один новый векторный слой;
- Создать слой для каждого файла векторные данные каждого файла загружаются отдельные слои;
- Загрузить все файлы в слой Векторы, не удаляя имеющиеся векторные данные добавляются при загрузке к объектам активного векторного слоя.

😞 Загрузка	
Олой Векторы содержит данные. Выбрано 2 файлов ди	пя загрузки.
Очистить слой и загрузить все файлы в него	0
Загрузить все в один новый слой	
Создать слой для каждого файла	
Загрузить все файлы в слой Векторы, не удаляя имеющ	иеся данные
	Отмена

Рис. 35. Загрузка векторного слоя

Соответствующие слои Векторы отображаются в Диспетчере слоев.

Если слой с векторными данными сохранен в другой системе координат либо в проекте с другими результатами уравнивания, автоматически используется пересчет координат и при загрузке выдается информационное сообщение о том, что координаты были пересчитаны.

Рис. 36. Пересчет координат при загрузке векторного слоя

При редактировании базовых слоев, содержащих векторные объекты, TIN перестраивается автоматически.

При закрытии одного из базовых слоев, закрывается слой TIN.

Для использования слоя, содержащего точки триангуляции, выполните следующие действия:

1. Выберите **Векторы > Создать слой из точек триангуляции**. Открывается окно **Загрузка точек триангуляции**.

😎 Загрузка точек триангуляции	_ _ _ _
Выберите источники координат точек:	
🔽 каталог опорных точек	
🔽 схема блока	
🔽 результаты уравнивания	
OK	Отмена

Рис. 37. Загрузка точек триангуляции в проект

- 2. [опционально] Для экспорта точек триангуляции из каталога опорных точек по умолчанию установлен флажок каталог опорных точек.
- 3. [опционально] Для экспорта точек триангуляции из слоя *Схема блока* в 2Dокне по умолчанию установлен флажок **схема блока**.
- 4. [опционально] Для экспорта точек триангуляции из каталога опорных точек уравненных координат точек по умолчанию установлен флажок **результаты уравнивания**.
- 5. Нажмите ОК. Открывается информационное окно, содержащее сведения о добавленных либо пропущенных точках.

 Нажмите ОК. В результате создается слой Точки триангуляции (Векторы). На схеме блока в 2D-окне отображаются векторные точечные объекты точки триангуляции.

Связующие точки отображаются в 2D-окне желтым цветом; опорные — красным.

Предусмотрена возможность сохранения слоя точек триангуляции в файл формата *.x-data в ресурсы активного профиля.

5.3.3. Построение границ TIN

В системе предусмотрена возможность построения границ TIN вручную или автоматически.

Для построения границ TIN вручную создайте граничные полигоны на отдельном векторном слое и выберите этот слой в окне Создать TIN в списке Использовать полигоны со слоя.

Для построения границ TIN в автоматическом режиме выполните следующие действия:

1. Выберите **ЦМР > TIN > Рассчитать границу...**. Открывается окно **Построить границу TIN**.

Исходные данные Векторы Векторы (2) Граница Выпуклая Несыпуклая Сглаживание Несколько областей Разделение нин макс	👼 Построить границу TIN	x
Векторы Векторы (2) Праница Выпуклая Певыпуклая Сглаживание Инин макс Несколько областей Разделение нин макс	Исходные данные	5
Векторы (2) Граница Выпуклая Певыпуклая Сглаживание нин макс Разделение нин макс	Векторы	
Граница С Выпуклая С Невыпуклая Сглаживание	🗹 Векторы (2)	
Граница Свыпуклая С Невыпуклая Сглаживание		
Граница Выпуклая Певыпуклая Сглаживание нин макс Несколько областей Разделение иин макс		
Граница Выпуклая Певыпуклая Сглаживание Инн макс Несколько областей Разделение нин макс		
Граница С Выпуклая С Невыпуклая Сглаживание нин макс Несколько областей Разделение нин макс		
Граница С Выпуклая С Несыпуклая Сспаживание	μ	_
С Выпуклая С Невыпуклая Сглаживание Несколько областей Разделение нин макс	Граница	
Сглаживание	С выпуклая 💿 Невыпуклая	
Сглаживание мин макс мин макс П Несколько областей Разделение Нин макс		
нн макс П Несколько областей Разделение нин макс	Сглаживание ————	
мин макс П Несколько областей Разделение , , , , , , , , , , , , , , , , , , ,		
Разделение	мин мако	
Разделение 	🗖 Несколько областей	
тала с с с с с с с с с с с с с с с с с с	Разделение	
1777) PGAL		
	nin nav	
ОК Отмена	ОК Отмена	

Рис. 38. Окно «Построить границу TIN»

 [опционально] В разделе Исходные данные по умолчанию установлены флажки у всех открытых слоев, которые используются при построении границ TIN. Снимите лишние флажки, если открыты слои, не предназначенные для создания границ TIN.

- 3. Выберите тип границы TIN:
 - Выпуклая граница граница строится с соединением крайних граничных пикетов выбранного слоя таким образом, чтобы TIN имел наиболее плавную границу;

Выпуклую границу рекомендуется устанавливать в случае, когда часть векторных объектов не покрывает всю площадь построения TIN (например, при наличии озер или рек на крупномасштабных снимках).

- Невыпуклая граница при построении границы соединяются только ближайшие граничные пикеты слоя.

Положение ползунка Степень сглаживания позволяет задать расстояние между граничными пикетами, ближе которого через них проходит граница. В крайнем левом положении ползунка пикеты соединяются последовательно, в крайнем правом граница выглядит как выпуклая.

 \sim

Рекомендуется установить ползунок Степень сглаживания посередине и плавно передвигать ползунок влево для получения наилучших результатов.

- [опционально] Для того чтобы разделить границу TIN на области в зависимости от исходных данных, установите флажок Несколько областей и передвигайте ползунок Разделение, чтобы определить максимальное расстояние между промежутками исходных векторных объектов, используемых для построения границы TIN.
- 5. Нажмите ОК. Происходит построение границы TIN в новом слое Граница TIN.

5.3.4. Построение TIN

Для того чтобы построить TIN, выполните следующие действия:

1. Выберите ЦМР > TIN > Построить (Ctrl+N, T) или нажмите на кнопку 🔀 дополнительной панели инструментов ЦМР. Открывается окно Создать TIN.

😔 Создать TIN	×
Исходные данные	
👿 auto_pts_5m_filtered (Векторы)	
Квазигоризонтали	
🔽 Отображать	
Начальный уровень	0.0 🚔 m
War	5.0 m
Гладкие горизонтали	•
Радиус кривизны 🔲 авто	0.001 🚔 m
Точность	0.5 🚔 m
Граница	
Выпуклая	
🔘 Невыпуклая	
Степень сглаживания	
🔘 Использовать полигоны со слоя	
auto_pts_5m_filtered (Векторы)	~
🗌 Только выделенные	
ОК	Отмена

Рис. 39. Окно «Создать TIN»

2. [опционально] В разделе **Исходные данные** по умолчанию установлены флажки у всех открытых слоев для их использования при создании TIN. Снимите. флажки, если открыты слои, не предназначенные для создания TIN.

- Чтобы выбрать все доступные слои, нажмите на кнопку 1, чтобы отменить выбор всех слоев — на кнопку 1. Для инвертирования выбора слоев предназначена кнопка 1.
- [опционально] В разделе Квазигоризонтали установите флажок Отображать и в поле Начальный уровень задайте минимальный уровень по высоте (Z min), с которого строятся квазигоризонтали.
- 4. [опционально] Задайте Шаг построения квазигоризонталей в метрах.

- [опционально] Для того чтобы создать квазигоризонтали в виде гладких кривых, установите флажок Гладкие горизонтали и введите параметры сглаживания:
 - Радиус кривизны для сглаживающей кривой.

Установите флажок авто для того чтобы рассчитывать Радиус кривизны для сглаживающей кривой автоматически.

- **Точность** максимальное расстояние от сегмента ломаной до кривой на участке между двумя ближайшими вершинами.
- 6. В разделе Граница установите:
 - Выпуклая граница граница строится с соединением крайних граничных пикетов выбранного слоя таким образом, чтобы TIN имел наиболее плавную границу;

Выпуклую границу рекомендуется устанавливать в случае, когда часть векторных объектов не покрывает всю площадь построения TIN (например, при наличии озер или рек на крупномасштабных снимках).

- Невыпуклая граница при построении границы соединяются только ближайшие граничные пикеты слоя.
 - Zhnj

Положение ползунка Степень сглаживания позволяет задать расстояние между граничными пикетами, ближе которого через них проходит граница. В крайнем левом положении ползунка пикеты соединяются последовательно, в крайнем правом граница выглядит как выпуклая.

Рекомендуется установить ползунок Степень сглаживания посередине и плавно передвигать ползунок влево для получения наилучших результатов.

- Использовать полигоны со слоя в пределах области полигона/полигонов выбранного в списке слоя строится TIN с выпуклой границей. Выберите из списка слой с полигонами, которые используются в качестве границы. Чтобы установить границу области построения TIN только из выделенных полигонов, установите флажок Только выделенные.
- 7. Нажмите ОК. Происходит построение TIN в новом слое TIN.

5.4. Отображение TIN

В системе предусмотрена возможность настройки отображения TIN в 2D-окне.

Для настройки выберите пункт меню **Сервис > Параметры** или нажмите на кнопку основной панели инструментов. Открывается окно **Параметры**, которое состоит из набора закладок для настройки различных параметров. Для параметров отображения TIN служит закладка TIN.

Рис. 40. Настройки отображения TIN

В системе по умолчанию установлен флажок **Раскраска TIN по высоте**, в результате TIN отображается в виде раскрашенных по высоте треугольников. Снимите флажок **Раскраска TIN по высоте**, чтобы все треугольники TIN отображались одним цветом, определенным для слоя TIN в *Диспетчере слоев*.

В разделе **Ускорение вывода** предусмотрены следующие параметры увеличения быстродействия и отображения TIN в виде сплошной заливки:

- Отображение сплошной заливкой для TIN, содержащих более заданного числа треугольников;
- отображение сплошной заливкой для TIN в масштабах, при которых окно вмещает более заданного числа треугольников.

Флажок Сглаживание при отображении служит для сглаживания TIN и квазигоризонталей в целях улучшения визуального восприятия.

При отображении TIN в виде сплошной заливки квазигоризонтали не отображаются.

Параметр Точность триангуляции предназначен для устранения ошибок создания TIN по векторным объектам, которые содержат близкорасположенные узлы. Значение в поле Точность триангуляции служит для определения минимального расстояния между точками, при котором они считаются разными вершинами, а не одной.

Для сокращения объема используемой памяти компьютера при редактировании больших массивов данных установите флажок **Не строить треугольники при создании слоя**.

Если необходимо отобразить TIN в виде треугольников при установленном флажке **Не строить треугольники при создании слоя**, в разделе **Ускорение вывода** введите значение параметра **Отображение сплошной заливкой для TIN, содержащих более** больше предыдущего.

В системе предусмотрена возможность отображения TIN в виде трехмерной модели рельефа, для этого выберите **Окна > 3D окно**.

5.5. Загрузка TIN

Для того чтобы загрузить TIN выполните следующие действия:

1. Выберите **ЦМР** > **TIN** > **Открыть** (**Ctrl+O**, **T**) или нажмите на кнопку 📩 дополнительной панели инструментов **ЦМР**. Открывается окно **Открыть**.

🛃 Открыть			
🚔 🛍 🗙 📑 🕂 🖷 🗈 🚺 🔁 🔁			
🕂 Data 🗸 🖌	∇	Размер	Время
Images bac	kup		28.01.2014 10:1
- Locks cla	sifier		23.08.2011 13:3
🕀 ProjOptions der	n		30.01.2014 14:5
Temp mo	saic		23.08.2011 13:0
the InfoMap_Images she	ets		23.08.2011 13:0
the InfoMap_Roma			
te- InfoMap_SAW			
The Information I The Informat			
Project data			
T- Kaponus-B Group			
E-Lite			
E- Master-class_Portugal_GeoMosaic_NZ			
Master-class_Portugal_Pachworks			Þ
E- Master_Class_GeoMosaic_Clouds			
	···)		
Имя ресурса	ĸ	TIN	•
При несовпадении системы координат пересчитывать через		1	
Пиксельные координаты	аты Настрой	<a< td=""><td></td></a<>	
		Открыть	Отмена
/Techsupport/InfoMap_Group/InfoMap_copy/Data	Ресурсов 5 / 0 байт (в	ыбрано ресурсов 0 / 0 б	эйт) //

Рис. 41. Загрузка TIN

- 2. Выберите один или несколько файлов TIN в ресурсах активного профиля с расширением x-tin.
- 3. [опционально] Установите способ пересчета координат объектов **при несовпадении системы координат** — через пиксельные или геодезические коор-

динаты (подробнее см. в руководстве пользователя «Общие параметры системы»).

 Нажмите на кнопку Открыть. В результате загружается слой TIN вместе с базовыми векторными слоями. Если в активном проекте уже загружен один или несколько слоев, содержащих TIN, при загрузке нового слоя открывается окно выбора типа загрузки.

👼 Загрузка	
😲 Слой ТІN содержит данные.	
Очистить слой и продолжить загрузку в нег	0
Создать новый слой и продолжить загрузку данны	х в него
	Отмена

Рис. 42. Загрузка слоя TIN

В системе предусмотрены следующие возможности загрузки нового слоя в существующий слой TIN:

- Очистить слой и продолжить загрузку в него векторные данные активного слоя заменяются данными из загружаемого слоя;
- Создать новый слой и продолжить загрузку данных в него векторные данные загружаются в новый слой.

В системе предусмотрена возможность быстрого доступа к последним загруженным файлам TIN. Для этого служит меню **TIN > Предыдущие**.

5.6. Сохранение TIN

Для сохранения и перезаписи активного слоя TIN выберите **ЦМР > TIN > Сохранить** либо щелкните правой кнопкой мыши по имени слоя в *Диспетчере слоев* и выберите в контекстном меню **Сохранить**.

Слой, содержащий TIN сохраняется в файле с расширением x-tin. В файле содержатся пути к базовым слоям, которые используются для построения TIN, а также шаг квазигоризонталей в метрах.

Для сохранения активного слоя TIN под новым именем выберите **ЦМР > TIN >** Сохранить как... либо щелкните правой кнопкой мыши по имени слоя в *Диспет*чере слоев и выберите в контекстном меню Сохранить как..., задайте имя и место для сохранения в ресурсах активного профиля.

При сохранении слоя, содержащего TIN, базовые слои, которые используются для построения TIN, сохраняются автоматически.

При закрытии одного из базовых слоев слой, содержащий TIN предлагается сохранить в ресурсах активного профиля, после этого слой TIN закрывается автоматически.

5.7. Восстановление TIN

В системе предусмотрена возможность восстановления TIN по исходным *горизонталям*. При создании слоя TIN происходит расчет дополнительных вершин, расположенных между горизонталями.

Для того чтобы восстановить TIN, выполните следующие действия:

1. Выберите TIN > Восстановить.... Открывается окно Восстановить TIN.

Исходные данные			
🔽 points_1m (Векторы)			
Параметры восстановления			
Режим восстановления	🖲 Быстро	🔊 🔘 Качесті	венно
Избавляться от горизонтальных треугольников			
Делить горизонтальные треугольники			
Учитывать площадь треугольников			
Точность восстановления	0.1	* M	
Максимальная глубина деления	5	A	
Экспортировать треугольники			
Квазигоризонтали			
Нацальный уровень		0.0	•
Пачальный уровень		5.0	_ _
		5.0	•
Радиус кривизны		0.001	
Тоциость		0.5	
Former Street St		0.5	•
праница			
• Выпуклая			
🗇 Невыпуклая			
Степень сглаживания			
🔿 Использовать полигоны со слоя			
points_1m (Векторы)			-
Только выделенные			

Рис. 43. Окно «Восстановить TIN»

 [опционально] В разделе Исходные данные по умолчанию установлены флажки у всех открытых векторных слоев для их использования при восстановлении TIN. Снимите флажки, если открыты слои, не предназначенные для восстановления TIN.

Чтобы выбрать все доступные слои, нажмите на кнопку 🃰, чтобы отменить выбор всех слоев — на кнопку 📑. Для инвертирования выбора слоев предназначена кнопка 🏗

- 3. В разделе Параметры восстановления задайте Режим восстановления:
 - Быстро;
 - Качественно;
 - [опционально] задайте параметры точности восстановления TIN и глубину разбиения нерегулярных треугольников;
- 4. [опционально] В разделе **Квазигоризонтали** установите флажок **Отображать** и в поле **Начальный уровень** задайте минимальный уровень по высоте (Z min), с которого строятся квазигоризонтали.
- 5. [опционально] Задайте Шаг построения квазигоризонталей в метрах.
- 6. [опционально] Для того чтобы создать квазигоризонтали в виде гладких кривых, установите флажок **Гладкие горизонтали** и введите параметры сглаживания:
 - Радиус кривизны для сглаживающей кривой.

Установите флажок авто для того чтобы рассчитывать Радиус кривизны для сглаживающей кривой автоматически.

- Точность максимальное расстояние от сегмента ломаной до кривой на участке между двумя ближайшими вершинами.
- 7. В разделе Граница установите:
 - Выпуклая граница граница строится с соединением крайних граничных пикетов выбранного слоя таким образом, чтобы TIN имел наиболее плавную границу;
 - Э Выпуклую границу рекомендуется устанавливать в случае, когда часть векторных объектов не покрывает всю площадь построения TIN (например, при наличии озер или рек на крупномасштабных снимках).
 - Невыпуклая граница при построении границы соединяются только ближайшие граничные пикеты слоя.

Положение ползунка Степень сглаживания позволяет задать расстояние между граничными пикетами, ближе которого через них проходит граница. В крайнем левом положении ползунка пикеты соединяются последовательно, в крайнем правом граница выглядит как выпуклая.

Рекомендуется установить ползунок Степень сглаживания посередине и плавно передвигать ползунок влево для получения наилучших результатов.

- Использовать полигоны со слоя в пределах области полигона/полигонов выбранного в списке слоя строится TIN с выпуклой границей. Выберите из списка слой с полигонами, которые используются в качестве границы. Чтобы установить границу области построения TIN только из выделенных полигонов, установите флажок Только выделенные.
- 8. Нажмите ОК. Происходит построение TIN в новом слое *TIN*. Так же создается новый векторный слой *Ridges*, содержащий дополнительные вершины, полученные при создании TIN.

Рис. 44. Быстрое восстановление TIN (исходные горизонтали, дополнительные вершины, восстановленная TIN)

Рис. 45. Качественное восстановление TIN (исходные горизонтали, дополнительные вершины, восстановленная TIN)

5.8. Информация о TIN

5.8.1. Краткая информация о TIN

Для того чтобы получить краткую информацию о слое TIN, щелкните правой кнопкой мыши по имени слоя в *Диспетчере слоев* и выберите в контекстном меню **Информация**. В результате выдается информационное окно со следующей информацией о слое:

- имя слоя;
- полный путь к файлу слоя;
- наличие данных и изменений в слое;
- возможность изменения слоя;
- координаты граничных узлов TIN, в том числе по высоте;
- количество вершин в базовых слоях;
- система координат слоя.
| 😎 РНОТО | MOD 5.25.1585 | |
|--------------------------|---|---------------|
| ▲ 0
▲ 0
① 1
■ 0 | 11.02.2014 13:05:44:
Информация о слое: TIN (TIN)
Ресурс: "/Тесhsupport/infoMap_Group/InfoMap_copy/Data/TIN.x-tin".
В слое есть данные
Слой изменен нет
Слой измен | |
| | СК | Дополнительно |

Рис. 46. Информация о слое TIN

5.8.2. Общая информация о TIN

Для того чтобы получить подробную информацию о слое TIN, выберите **ЦМР > TIN > Статистика**. Открывается окно **TIN — статистика**.

😎 TIN - статистика		_ 🗆 🗵					
Общие							
Информация о слое: TIN (TIN) Ресурс: "Утесначирои/InfoMap_Group/InfoMap_copy/Data/TIN.xtin". В слое есть данные Слой изменен: нет Границы: - Xmir 4969619.432 - Ymir 6442871.037 - Zmir 123.543 - Xmax 4970832.527 - Ymax 644497.132 - Zmax 132.946 Вершин в базовых векторных слоях 10132							
<u> </u>							
Детально							
Распределение треуго	льников по площади						
Мин	1.68898e-05 м^2						
Макс	31764.6 м^2						
1.68898e-05 - 3176.46		99.81%					
3176.46 - 6352.92	0.1322%						
6352.92 - 9529.39	0.03449%						
9529.39 - 12705.8	0.0115%						
12705.8 - 15882.3	0						
15882.3 - 19058.8	0.005748%						
19058.8 - 22235.2	0						
22235.2 - 25411.7	0						
25411.7 - 28588.2	0						
28588.2 - 31764.6	0.005748%						
		Закрыть					

Рис. 47. Окно «TIN — статистика»

В разделе Общие содержится краткая информация о слое TIN.

В разделе **Детально** содержится информация о диапазоне распределения следующих данных на слое:

Данную информацию рекомендуется использовать для поиска грубых ошибок на слое TIN.

- Распределение треугольников по площади (в кв. метрах);
- Распределение вершин по Z (в метрах);

- Распределение треугольников по минимальному углу (в градусах);
- Распределение треугольников по максимальному углу (в градусах).

Ниже расположена таблица распределения данных, в которой содержатся строки:

- Мин и Макс минимальный и максимальный диапазон данных;
- (например, 28588.2 31764.6) распределение данных в процентном соотношении.

5.8.3. Информация о площади TIN

В системе предусмотрена возможность вычисления площади поверхности TIN.

Для того чтобы вычислить площадь поверхности TIN в пределах полигона, выберите полигон на базовом слое либо создайте новый полигон и выберите **ЦМР** > **ТIN** > **Площадь полигона на поверхности**. В результате выдается информационное окно со значением площади TIN внутри выбранного полигона.

😎 РНОТ	omod	5.25.1585	
A 0	4	11.02.2014 12:39:52: Площадь полигона на поверхности ТИН: 115.514342 м^2	
٥ 🛦			
🤨 1 -			
5 12			
		ОК Дополни	пельно

Рис. 48. Площадь полигона на поверхности TIN

Для того чтобы вычислить площадь проекции TIN на плоскость и площадь 3D поверхности TIN, выберите **ЦМР > TIN > Посчитать площадь**. В результате выдается информационное окно со значениями площадей TIN.

Рис. 49. Площадь поверхности TIN

5.9. Перестроение TIN

После редактирования объектов базового слоя (см. руководство пользователя «Векторизация») в системе предусмотрена возможность перестроения TIN.

Слой TIN не является редактируемым. Для изменения слоя TIN необходимо отредактировать базовые слои, на основе которых происходило построение TIN.

Чтобы перестроить TIN с учетом векторных объектов нового векторного слоя, выберите **Векторы > Открыть**, выберите файл и нажмите на кнопку **Открыть**. Открывается окно **Загрузка**.

🐥 Загрузка 📃	
Олой Векторы содержит данные.	
Очистить слой и продолжить загрузку в него	
Создать новый слой и продолжить загрузку данных в него	
Добавить в слой Векторы новые данные, не удаляя имеющиеся	
	- , I
Отмена	

Рис. 50. Загрузка векторного слоя

В системе предусмотрены следующие возможности загрузки нового слоя в существующий векторный слой:

- Очистить слой и продолжить загрузку в него либо Добавить в слой Векторы новые данные, не удаляя имеющиеся происходит загрузка векторных объектов в базовый слой. В результате TIN перестраивается автоматически;
- Создать новый слой и продолжить загрузку в него происходит загрузка векторных объектов в новый слой. Постройте TIN с использованием нового слоя в качестве базового.

Чтобы перестроить TIN с учетом внесенных изменений в векторные объекты в базовых слоях, выполните следующие действия:

 Выберите ЦМР > TIN > Перетриангулировать или нажмите на кнопку ²⁴ дополнительной панели инструментов ЦМР. Открывается окно Сглаживание границы TIN.

Рис. 51. Сглаживание границы TIN

- 2. Установите:
 - Выпуклая граница граница строится с соединением крайних граничных пикетов выбранного слоя таким образом, чтобы TIN имел наиболее плавную границу;

- Выпуклую границу рекомендуется устанавливать в случае, когда часть векторных объектов не покрывает всю площадь построения TIN (например, при наличии озер или рек на крупномасштабных снимках).
- Невыпуклая граница при построении границы соединяются только ближайшие граничные пикеты слоя.

Положение ползунка Степень сглаживания позволяет задать расстояние между граничными пикетами, ближе которого через них проходит граница. В крайнем левом положении ползунка пикеты соединяются последовательно, в крайнем правом граница выглядит как выпуклая.

Рекомендуется установить ползунок Степень сглаживания посередине и плавно передвигать ползунок влево для получения наилучших результатов.

3. Нажмите ОК для перестроения TIN в соответствии с измененными данными.

5.10. Встраивание объектов в TIN

В системе предусмотрена возможность встраивания слоя векторных объектов в уже построенный слой TIN.

Данная функция применяется, например, для отображения стен домов вертикальными в слое TIN.

Для встраивания векторных объектов в слой TIN служит окно Встраивание объектов в TIN (ЦМР > TIN > Встроить объекты).

Рис. 52. Окно «Встраивание объектов в TIN»

Для выбора файла с векторными объектами предусмотрены следующие кнопки:

- 📰 позволяет выбрать все файлы;
- 📑 позволяет отменить выбор всех файлов;

• 🔢 — позволяет инвертировать выбор файлов.

После встраивания векторных объектов в слой TIN создается новый слой.

По умолчанию при встраивании объектов создается векторный слой, который состоит из объектов исходного векторного слоя и данных TIN.

Для построения нового слоя, который состоит из векторных объектов и слоя TIN, по умолчанию установлен флажок **Включить TIN в построение**. Иначе в новом слое создаются только векторные объекты.

Порог привязки позволяет установить значение в метрах меньше которого не происходит встраивание векторных объектов.

5.11. Контроль точности построения TIN

5.11.1. Контроль по точкам триангуляции

Если при построении TIN не использовался слой точек триангуляции, то существует возможность контроля точности построения TIN по точкам триангуляции, полученным на этапе построения сети. Для этого служит пункт меню **ЦМР > TIN > Контроль** по точкам триангуляции.

Окно **Контроль точности** содержит таблицу всех точек (опорных/контрольных/связующих), полученных на этапе построения сети (см. руководство пользователя «Построение сети»).

Контро	Контроль точности							
🔽 Опор	ные 🔽 Ко	нтрольные 🕅 С	тущения	🔽 Связующие Исп. точ	нек: 148 🥅 Только измеренн	ње 🔽 Уравненные	;	
N	Имя	Тип 🔻	Исп.	Х	Y	Z	Ez 🔺	
1	0556	Опор.		•	-	•	· ·	
2	0911	Опор.		6444342.712	4970710.805	129.168	-0.052	
3	0908	Опор.	\checkmark	6444471.580	4970281.335	130.675	0.581	
4	0906	Опор.	•		-	-	-	
5	0551	Опор.	•	•			•	
6	1010	Опор.	•	-	-	-	-	
7	1009	Опор.	\checkmark	6442967.361	4970639.866	180.790	0.298	
8	OT31	Опор.	\checkmark	6442953.327	4970211.411	160.923	1.210	
9	1004	Опор.	\checkmark	6442930.320	4969846.774	146.206	1.079	
10	OT34	Опор.	•	-	-	-	-	
11	0904	Контр.	•				•	
12	*12	Связ.	\checkmark	6443673.752	4970710.224	130.942	0.669	
13	*16	Связ.	\checkmark	6443946.169	4970228.794	129.512	-0.099	
14	*17	Связ.	\checkmark	6443995.601	4970520.725	129.989	-0.131	
15	×18	Связ.	\checkmark	6443687.661	4970702.653	129.169	-0.063	
16	*19	Связ.		6443881.914	4969810.533	131.276	-0.252	
17	*20	Связ.		6443595.379	4970492.243	130.109	0.019 💆	
Ē								
MBR MBR	UKU: [1.129	Max	c 6.791					

Рис. 53. Контроль точности по точкам триангуляции

Верхняя панель инструментов окна служит для настройки отображения точек триангуляции в списке: Опорные, Контрольные, Связующие, точки Сгущения, Только измеренные (точки триангуляции с вычисленной в процессе построения TIN, координатой Z), Уравненные.

Поле Исп. точек служит для отображения количества точек, которые используются при вычислении отклонения TIN по Z-координате (в столбце Исп. установлен V).

Таблица точек триангуляции состоит из следующих столбцов:

- **Имя** номер точки;
- Тип тип точки: опорная, контрольная либо связующая точка;
- Исп. данные об использовании точки при вычислении отклонения TIN по Zкоординате, либо об уравнивании:
 - точка триангуляции использовалась;
 - — точка триангуляции не использовалась;
 - точка триангуляции не может быть использована, так как не использовалась в уравнивании.
- Х, Ү, Z уравненные координаты точки триангуляции;
- Ez значение отклонения TIN от точки триангуляции по Z-координате.

Панель статуса служит для отображения значения средней квадратической ошибки (СКО) и значения максимальной ошибки отклонения TIN по Z-координате (Мах).

Кнопка "" позволяет отобразить в списке точку с максимальной ошибкой отклонения от TIN по Z-координате.

😎 Отчет						_ 🗆 ×
👖 📴 А 🎒						
TIN: TIN						
Отклонения:						
N	Тип	Исп.	x	Y	Z	E z
0556	Опор.	1	-	-	-	-
0911	Опор.	+	6444342.712	4970710.805	129.168	-0.052
0908	Опор.	+	6444471.580	4970281.335	130.675	0.581
0906	Опор.	1.1	-	-	-	-
0551	Опор.	1.1	-	-	-	-
1010	Опор.	1	-	-	-	-
1009	Опор.	-	6442967.361	4970639.866	180.790	0.298
OT31	Опор.	+	6442953.327	4970211.411	160.923	1.210
1004	Опор.	+	6442930.320	4969846.774	146.206	1.079
OT34	Опор.	1	-	-	-	-
0904	Контр.	1.1	-	-	-	-
*12	Связ.	-	6443673.752	4970710.224	130.942	0.669
*16	Связ.	-	6443946.169	4970228.794	129.512	-0.099
*17	Связ.	+	6443995.601	4970520.725	129.989	-0.131
*18	Связ.	+	6443687.661	4970702.653	129.169	-0.063
*19	Связ.	+	6443881.914	4969810.533	131.276	-0.252

Кнопка 🖹 позволяет открыть подробный отчет контроля точности.

Рис. 54. Отчет контроля точности по точкам триангуляции

Верхняя панель окна Отчет содержит следующие кнопки:

- 👖 позволяет закрыть окно отчета;
- 🔁 позволяет сохранить отчет в файловой системе Windows;
- А позволяет изменить шрифт, начертание, размер либо цвет текста отчета;
- 🗁 позволяет распечатать отчет.

5.11.2. Контроль TIN по векторным объектам

В системе предусмотрена возможность контроля построения TIN по векторным объектам, которые не использовались в построении TIN. Для контроля сравниваются значения отклонения TIN от вершин векторных объектов по Z-координате.

Для контроля построения TIN по векторным объектам выполните следующие действия:

1. Выберите **ЦМР > TIN > Контроль по векторным объектам**. Открывается окно **Параметры контроля точности TIN по векторам**.

Показать наихудшие	128 🌠 отсчетов
🔿 Показать с ошибкой боль	ыше заданной 1.0 🌠 м

Рис. 55. Параметры контроля точности TIN по векторам

- 2. Выберите параметры отображения списка точек:
 - Показать наихудшие..отсчетов позволяет отобразить список вершин векторных объектов с наихудшими отклонениями от TIN по Z-координате;
 - Показать с ошибкой больше заданной позволяет отобразить список вершин векторных объектов с отклонением больше заданного от TIN по Zкоординате.
- 3. Нажмите ОК. Запускается процесс сравнения значения отклонения TIN от вершин векторных объектов по Z-координате. В результате открывается окно Контроль TIN по векторным объектам.

😞 Koi	нтроль TIN по в	екторным объ	ектам			
B						
N=0 N=1	X=6443309.493 X=6444133.807	Y=4970655.654 Y=4969678.502	Z=150.594 Z=133.993	DZ=0.202 DZ=-0.194		
N=2 N=3	X=6444137.686 X=6443288.687	Y=4969683.862 Y=4970297.877	Z=133.996 Z=150.796	DZ=0.194 DZ=0.171		
N=4 N=5 N=6	X=6444176.423 X=6444432.820 X=6443765.913	Y=4970647.757 Y=4970647.757	Z=130.331 Z=130.180 Z=128.653	DZ=-0.165 DZ=-0.146 DZ=-0.135		
N=7 N=8	X=6444098.377 X=6443899.006	Y=4969678.667 Y=4970149.776	Z=131.234 Z=130.399	DZ=-0.130 DZ=-0.125		
N=9 N=10	×=6444131.491 ×=6443489.756	Y=4970739.248 Y=4970019.286	Z=134.613 Z=136.539	DZ=-0.096 DZ=0.075		
N=11 N=12	X=6443498.523 X=6443087.189	Y=4970029.662 Y=4969638.918	Z=136.752 Z=134.033	DZ=0.072 DZ=0.001		
N=13 N=14 N=15	X=6443091.009 X=6443575.054 X=6443535.921	Y=4969629.486 Y=4969676.714 Y=4969639.247	Z=134.034 Z=129.791 Z=130.336	DZ=0.000 DZ=0.000 DZ=0.000		
N=16	X=6443547.974	Y=4969650.829	Z=130.330 Z=130.332	DZ=0.000		
ICKO=0).045	Средн	ий модуль=С	1.013	Makc.=0.202	1.

Рис. 56. Результаты контроля точности TIN по векторным объектам

Для того чтобы экспортировать список точек в файл с расширением csv, нажмите на кнопку 📴.

4. Щелчком мыши выберите точку в списке. В результате маркер позиционируется в точку пересечения и отображается в 2D-окне.

Рис. 57. Контроль TIN по векторным объектам

5.11.3. Проверка топологии TIN

В системе предусмотрена возможность проверки топологии TIN.

Понятие *топология* является одним из ключевых терминов при оценке качества создаваемых карт. Под *топологией* в настоящей документации понимается набор функций и операций, которые определяют взаимное расположение векторных объектов и служат для создания топологически корректных векторных данных.

Топология (от греч. *topos* - место) — раздел математики, изучающий в самом общем виде явление непрерывности, в частности, свойства пространства, которые остаются неизменными при непрерывных деформациях, например, связность.

Проверка топологии TIN заключается в поиске и исправлении близлежащих вершин треугольников TIN (соответствующих им точек или вершин полилиний/полигонов базовых векторных слоев). Исправление топологии подразумевает удаление либо совмещение близлежащих вершин TIN.

Для того чтобы запустить проверку топологии TIN, выполните следующие действия:

1. Выберите ЦМР > TIN > Проверка топологии.... Открывается окно Параметры.

Рис. 58. Параметры проверки топологии

- 2. В списке **Используемая метрика** определите, 2D либо 3D пространство используется для поиска ошибок топологии.
- 3. В поле **Макс. расстояние** определите расстояние между вершинами, меньше которого вершины считаются близлежащими.
- 4. Нажмите ОК. Запускается процесс поиска близлежащих вершин TIN. После завершения процесса поиска открывается окно **Исправление ошибок**.

	Исправление ошибок	_ 🗆 🗙
*	👻 🖲 Совмещать точки 💦 Удалять точки	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Близлежащие вершины: (6444401.099 4970650.151) Близлежащие вершины: (644411.402 495972.786) Близлежащие вершины: (644475.227 4969947.703) Близлежащие вершины: (6444275.227 496947.703) Близлежащие вершины: (644422,354 4970038.223) Близлежащие вершины: (6444243,312 4970038,223) Близлежащие вершины: (644429,313 4970037,116) Близлежащие вершины: (6444332,256 497053,4566) Близлежащие вершины: (6444332,256 497053,656) Близлежащие вершины: (6444332,256 4970754,656) Близлежащие вершины: (644432,730 4970724,077) Близлежащие вершины: (6444032,054 970725,1791) Близлежащие вершины: (6444032,054 970726,7741) Близлежащие вершины: (6444032,054 9707724,0771)	

Рис. 59. Исправление ошибок топологии

- 5. Щелчком мыши выберите точку в списке. В результате маркер позиционируется в точку и отображается в 2D-окне.
- 6. Установите вариант исправления топологии: Совмещать точки либо Удалять точки.
- 7. Для исправления близлежащих вершин TIN выполните одно из следующих действий:
 - «привяжите» вершины с помощью снаппинга (см. руководство пользователя «Векторизация»);
 - для исправления топологии для всех точек в списке нажмите на кнопку 🎇;
 - для исправления топологии только выбранных точек в списке нажмите на кнопку <u>ж</u>.

В результате исправления топологии близлежащих вершин TIN ошибочные вершины совмещаются в одну вершину со средним значением координат либо удаляются.

5.12. Экспорт TIN

5.12.1. Экспорт TIN в DXF

В системе предусмотрена возможность экспорта слоя TIN в формат DXF для дальнейшего его использования в сторонних программных продуктах.

Для экспорта TIN в формат DXF выполните следующие действия:

1. Выберите ЦМР > TIN > Экспорт > DXF.... Открывается окно Экспорт в формат DXF.

Рис. 60. Экспорт в формат DXF

- 2. Выберите папку для размещения файла в файловой системе Windows.
- 3. Введите Имя файла.
- 4. Нажмите на кнопку Сохранить. Открывается окно Экспорт в формат DXF.

😎 Экспорт в формат DXF		_ 🗆 🗵
C:\Projects\экспорт1.txt		
Экспортируемые объекты		
🔽 Вершины		
🔽 Ребра		
🔽 Треугольники		
• Экспортировать как полигоны		
Экспортировать как 3D Face		
🔿 Экспортировать как Polyface Mesh		
Менять местами X и Y		
	ОКО	тмена

Рис. 61. Параметры экспорта в формат DXF

- [опционально] В разделе Экспортируемые объекты для экспорта вершин, ребер и треугольников TIN по умолчанию установлены флажки Вершины, Ребра, Треугольники. Снимите флажки для экспорта только определенного вида объектов.
- 6. Установите:
 - Экспортировать как полигоны позволяет экспортировать объекты в виде полигонов;
 - Экспортировать как 3D Face позволяет экспортировать верхнюю грань объекта;
 - Экспортировать как Polyface Mesh позволяет экспортировать как многогранный объект.
- 7. [опционально] Для того чтобы изменить систему координат при экспорте TIN, установите флажок **Менять местами X и Y**.
 - Сли не установлен флажок **Менять местами X и Y**, то исходные данные экспортируются в правой системе координат. Иначе в левой системе координат.
- 8. Нажмите ОК для завершения экспорта.

5.12.2. Экспорт TIN в CSV

В системе предусмотрена возможность экспорта TIN в формат CSV. Формат CSV представляет собой обменный текстовый формат с расширением *.csv, который

поддерживается большим количеством программ разной специализации. Он используется как обменный формат в случаях, когда специализированные форматы для геопространственных данных по тем или иным причинам применить невозможно.

Для экспорта TIN в формат CSV выполните следующие действия:

1. Выберите ЦМР > TIN > Экспорт > CSV.... Открывается окно Экспорт в формат CSV.

Рис. 62. Экспорт в формат CSV

- 2. Выберите папку для размещения файла в файловой системе Windows.
- 3. Нажмите на кнопку Сохранить. Открывается окно Экспорт в формат CSV.

👼 Экспорт в формат СSV						
C:\Projects\экспорт1.csv						
Экспортировать						
С Пикеты	Пикеты и вершины	структурных линий				
Шаблон строки						
X,Y,Z						
🔲 Строка с заголовками полей	й 👘 Максимум знаков по	сле запятой: 18	24			
Доступные поля		спользуемые поля				
Ŷ Z	× × ×					
Десятичный разделитель	Экранировать кавычками	Разделитель поле	C. Tofunguug			
💿 Точка	 Все текстовые поля 	С Пробел	С Точка с запятой			
C Запятая	О Все поля	С Другой				
Пересчитать систему коорди	нат					
Декартова левая (Декартова	левая локальная система коорд	инат)	Выбрать 🔳 🔹			
Ориентация осей: левая тройка, геод. привязка: локальная (условная) система координат						
Выходная система координат						
Декартова левая (Декартова	левая локальная система коорд	инат)	Выбрать 🔍 👻			
Ориентация осей: левая тройк	а, геод. привязка: локальная (у	словная) система ко	ординат			
		0	Отмена			

Рис. 63. Параметры экспорта в формат CSV

- 4. В разделе Экспортировать установите, Пикеты или Пикеты и вершины структурных линий необходимо экспортировать.
- 5. В поле Шаблон строки отображается список полей, которые содержатся в каждой строке экспортируемого CSV файла. Для того чтобы очистить поле, нажмите на кнопку Очистить список т.
- 6. [опционально] Для того чтобы экспортировать строку из поля Шаблон строки, установите флажок Строка с заголовками полей.
- [опционально] Для того чтобы изменить количество знаков после запятой в экспортируемых координатах, установите флажок Максимум знаков после запятой: и введите необходимое значение.
- 8. В списке Доступные поля выберите необходимое имя поля и нажмите на кнопку Добавить выбранное поле > или нажмите на кнопку Добавить все поля >>, чтобы перенести все имена полей. В результате все или выбранные имена полей перемещаются в список Используемые поля.

Для отмены выбора имени поля нажмите на кнопку < или нажмите на кнопку << для отмены перемещения всех имен полей. Для того чтобы переместить выбранное поле

вниз списка, нажмите на кнопку 🐺, чтобы переместить выбранное поле вверх списка нажмите на кнопку 🚹.

- 9. В разделе **Десятичный разделитель** установите точка или запятая используется для разделения координат.
- 10. [опционально] Для того чтобы ограничить кавычками необходимые области экспортируемого списка координат, в разделе Экранировать кавычками выберите один из вариантов:
 - **Авто** позволяет автоматически ограничить кавычками поля, которые находятся в экспортируемом файле;
 - Все текстовые поля позволяет ограничить кавычками только поля, которые содержат текстовую информацию;
 - Все поля позволяет ограничить кавычками каждое поле, которое находится в экспортируемом файле.
- 11. В разделе **Разделитель полей** установите, чем разделяются поля: запятая, пробел, табуляция, точка с запятой или другие разделители.

При наличии разделителя полей в виде запятой, не рекомендуется использовать десятичный разделитель в виде запятой, иначе в результате импорта создаются объекты с некорректными координатами.

- 12. [опционально] Для определения стандартных параметров установите флажок **Пересчитать систему координат** (см. *Изменение системы координат объектов* в руководстве пользователя «Векторизация»);
- 13. Нажмите ОК для завершения экспорта.

5.13. Фильтрация

5.13.1. Прореживание

В системе предусмотрена возможность прореживания вершин треугольников TIN с помощью прореживания точечных векторных объектов в базовых слоях, по которым построен TIN.

Для прореживания выполните следующие действия:

1. Создайте или загрузите TIN.

2. Выберите ЦМР > TIN > Прореживание. Открывается окно Прореживание TIN.

🜻 Прореживание TIN		_ 🗆 X
Исходный TIN:		
- Количество вершин:	255398	
- Среднее расстояние между вершинами:	5.759	м
Параметры прореживания:		
🥅 Максимальное отклонение от исходной модели	0.0	м
🔲 Среднее расстояние между вершинами	5.759149816!	м
0)	От	мена

Рис. 64. Параметры прореживания TIN

В окне отображается статистика по исходному TIN: общее количество вершин сети и среднее расстояние между вершинами (средняя длина ребер TIN) в метрах.

- 3. Задайте Параметры прореживания:
 - [опционально] установите флажок Максимальное отклонение от исходной модели и задайте максимальное отклонение по Z исходной модели от прореженной в метрах;
 - [опционально] установите флажок Среднее расстояние между вершинами и задайте расстояние между вершинами после прореживания в метрах.
- 4. Нажмите ОК. В результате после завершения процесса прореживания выдается информационное сообщение о количестве удаленных вершин.

Удаление вершин TIN означает удаление векторных точек с базовых слоев. Фильтр работает со всеми базовыми слоями как с одним редактируемым слоем.

Для отмены результатов прореживания служит **Журнал действий**, а также кнопки 📔 и 🗠 основной панели инструментов.

5.13.2. Фильтр выбросов

В системе предусмотрена возможность фильтрации выбросов, которая служит для поиска вершин TIN, значение Z которых значительно отличается от соседних вершин — определяются вершины резких локальных выбросов. Фильтрация выбросов позволяет удалить часть вершин, формирующих наиболее «остроконечные» пирамиды.

Для фильтрации выбросов выполните следующие действия:

- 1. Создайте или загрузите TIN.
- 2. Выберите **ЦМР > TIN > Фильтр выбросов**. Открывается окно **Фильтрация выбросов**.

🕏 Фильтрация выбросов				_ 🗆 🗙
-	Гистограмма коэф	фициента выбросов		
.01 17	34	52	69	86
Метод расчета коэффициента	По минимальному н	наклону нормали		•
Вершины, соотве	етствующие выброс	зам при текущем зна	чении фильтра:	
1 738121.926 257896.395	572.477			
2 738026.008 257488.792	630.603			
3 738045.574 257516.625	584.547			
4 736030.186 258958.542	592.804			
5 736034.711 258988.443	597.446			
6 / 30343,890 29/628,991	973,684			
	Выбрано: 1	из 6 вершин		
Выбрать все 9,	далить		3	акрыты

Рис. 65. Фильтрация выбросов

На гистограмме отображается относительное распределение вершин TIN с различными коэффициентами выброса. Вершина, имеющая значение коэффициента выброса, равное 0, предполагается безошибочной. Вершина с максимальной вероятностью ошибки (в соответствии с выбранным методом расчета) имеет коэффициент выброса, равный 100.

- 3. Задайте **Пороговое значение коэффициента выбросов** или переместите с помощью кнопки мыши красную линию на графике для фильтрации вершин, попадающих в области выше заданного значения (за красной линией).
- 4. В разделе Настройка фильтра выберите в списке Метод расчета коэффициента выбросов:
 - По минимальному наклону нормали коэффициент выброса пропорционален минимальному по треугольникам, окружающим вершину, значению угла между нормалью к плоскости треугольника и осью Z;
 - По максимальному наклону нормали коэффициент выброса пропорционален максимальному по треугольникам, окружающим вершину, значению угла между нормалью к плоскости треугольника и осью Z;

- По среднему наклону нормали коэффициент выброса пропорционален среднему по треугольникам, окружающим вершину, значению угла между нормалью к плоскости треугольника и осью Z;
- По проекции суммарной нормали коэффициент выброса обратно пропорционален модулю проекции векторной суммы нормалей к треугольникам, окружающим вершину, на ось Z;
- По модулю суммарной нормали коэффициент выброса обратно пропорционален модулю векторной суммы нормалей к треугольникам, окружающим вершину.
- 5. Нажмите на кнопку **Обновить**. В нижней части окна отображается список вершин, соответствующих выбросам при заданных параметрах.
- 6. Щелчком мыши выберите вершину в списке. В результате маркер позиционируется в выбранную вершину и отображается в 2D-окне.

Для выделения группы вершин служат клавиши Ctrl или Shift. Кнопка Выбрать все позволяет выделить все найденные вершины.

7. Нажмите на кнопку **Удалить** для удаления выделенных в списке пикетов с базового слоя. TIN перестраивается автоматически.

Удаление вершин TIN означает удаление векторных точек с базовых слоев. Для отмены результатов прореживания служит **Журнал действий**, а также кнопки 📔 и 🎦 основной панели инструментов.

5.13.3. Фильтр TIN по диапазону высот

В системе предусмотрена возможность редактирования TIN с использованием фильтра по высоте. При фильтрации по диапазону высот производится удаление векторных точек, а также вершин полилиний/полигонов (соответствующих вершинам TIN), Z-координата которых не попадает в указанный диапазон.

Фильтрация TIN выполняется с учетом структурных линий.

Для фильтрации по диапазону высот объектов базовых векторных слоев, использованных для создания TIN, выполните следующие действия:

- 1. Создайте или загрузите TIN.
- 2. Выберите ЦМР > TIN > Фильтр по Z-диапазону. Открывается окно Фильтр по Z-диапазону.

🚔 Филь	ътр по Z-диапазону			
Слой	TIN (TIN)			
Zmin	536.2863 м	Zmax	649.7666 м	
Диапа:	зон фильтра			
Zmin	536.2863323(🌠 м	Zmax	649.76661058 🚺 м	
			ок	Отмена

Рис. 66. Параметры фильтрации TIN

В поле Слой отображается имя загруженного слоя TIN, в полях Zmin и Zmax — перепад высот в метрах, рассчитанный по всем вершинам TIN.

- 3. В разделе **Диапазон фильтра** по умолчанию отображаются значения рассчитанного перепада высот. Задайте максимальное и минимальное значения Z в метрах для фильтрации точек.
- 4. Нажмите ОК. В результате фильтрации удаляются все точки и вершины полилиний/полигонов, Z-координата которых не попадает в заданный диапазон.

Удаление вершин TIN означает удаление векторных точек с базовых слоев. Для отмены результатов прореживания служит **Журнал действий**, а также кнопки 📓 и 🕥 основной панели инструментов.

5.13.4. Гладкая интерполяция TIN

В системе предусмотрена возможность интерполяции сети TIN для сглаживания ЦМР с целью построения или улучшения горизонталей в случае, если одним из базовых слоев для создания TIN являлся слой с горизонталями.

Фильтрация TIN выполняется с учетом структурных линий.

Для интерполяции TIN выполните следующие действия:

1. Создайте или загрузите TIN.

Для интерполяции TIN в пределах сетки необходимо создать или загрузить сетку перед использованием интерполяции.

2. Выберите ЦМР > TIN > Интерполировать. Открывается окно Гладкая интерполяция TIN.

🐥 Гладкая интерполяция TIN
Область интерполяции
По всей площади TIN
С В пределах сетки
Метод интерполяции
О Линейная
Гладкая модель
Расчет по окрестности из 40 🔀 точек
War 5.0 🕅 m
Назначение
О Активный векторный слой
Новый векторный слой
🔽 Включить этот слой в TIN и перестроить TIN
ОК Отмена

Рис. 67. Параметры интерполяции TIN

- 3. Установите Область интерполяции:
 - По всей площади TIN;
 - В пределах сетки используются параметры регулярной сетки с заданным шагом.
- 4. Установите Метод интерполяции:
 - Линейная сгущение TIN с помощью добавления точек на поверхности треугольников;
 - **Гладкая модель** использование поверхности второго порядка для интерполяции по заданному числу точек в окрестности треугольника, в котором расположен узел сетки.

Для гладкой модели задайте количество точек, по которым производится интерполирование, в поле **Расчет по окрестности из..точек**.

Рекомендуется в поле Расчет по окрестности из..точек задать значение не более чем 100 точек.

- 5. Задайте Шаг интерполяции в метрах.
- 6. Выберите способ сохранения результатов интерполяции:
 - Активный векторный слой перезаписывается активный векторный слой;

 Новый векторный слой — результаты интерполяции копируются в новый векторный слой.

По умолчанию установлен флажок **Включить этот слой в TIN и перестроить TIN** для автоматического обновления сетки TIN в соответствии с результатами фильтрации.

7. Нажмите ОК. В результате интерполируется содержимое базового векторного слоя и выводятся результаты в зависимости от выбранных параметров.

5.14. Преобразование TIN в векторный слой

В системе предусмотрена возможность преобразования TIN в векторный слой.

Для этого выполните следующее:

- 1. Создайте или загрузите слой TIN;
- Выберите ЦМР > TIN > Преобразовать в векторный слой. Открывается окно Конвертация TIN;

🕏 Конвертация TIN		×
Экспортируемые объекть	I	
🔘 Вершины		
🔘 Ребра		
Отреугольники		
	ОК	Отмена

Рис. 68. Окно «Конвертация TIN»

В окне **Конвертация TIN** выберите параметры преобразования TIN в векторный слой:

- Вершины для того чтобы сохранить вершины нерегулярных треугольников в новом векторном слое в виде пикетов;
- **Ребра** для того чтобы сохранить ребра нерегулярных треугольников в новом векторном слое в виде полилиний;
- **Треугольники** для того чтобы сохранить нерегулярные треугольники в новом векторном слое в виде полигонов;
- 3. Нажмите ОК.

5.15. Создание текстурированных 3D поверхностей TIN

В системе предусмотрена возможность создания текстурированных 3D поверхностей TIN.

Выходной формат текстурированных 3D поверхностей TIN — *.tx3. Для дальнейшей работы с 3D-TIN используется программа *PHOTOMOD 3D-Mod* (подробное описание см. в руководстве пользователя «Трехмерное моделирование»).

Для создания текстурированной 3D поверхности TIN выполните следующее:

 Выберите ЦМР > TIN > Построить 3D-TIN.... Открывается окно Построить 3D-TIN;

• Построить 3D-TIN			23
💿 Входная матрица высот			
💿 Папка с входным облаком то	нек		
/Antwerp/Antwerp/Data/			
Выходной 3D-TIN			
Режим построения поверхности	1		
 Ball pivoting algorithm 			
Poisson surface reconstruction	1		
Прореживание			
 По критерию точности 		🖱 По количественному критер	ию
Отклонение от исходной	1.0	Максимальное число	1000000
поверхности, м		треугольников	¥
Минимальное число треугольников	10000		
Тайлы		Текстуры	
🔲 Делить на тайлы		🔽 Строить текстуры	
Размер тайла, пикс	2048	Размер текстуры, пикс	4096
Перекрытие тайлов, пикс	32	Выравнивание яркости	
Использовать все доступные я	дра ЦПУ		
	C	К Распределенная обраб	отка Отмена

Рис. 69. Окно «Построение 3D-TIN по матрице высот»

2. [опционально] В разделе **Входная матрица высот** нажмите на кнопку _____ для выбора исходной матрицы высот в ресурсах активного профиля;

Нажмите на кнопку 🛃 для того чтобы открыть окно Выбор слоев и выбрать исходную матрицу высот из списка матриц, загруженных в проект.

3. [опционально] В разделе Папка с входным облаком точек нажмите на кнопку для выбора папки, содержащей облака точек LAS в ресурсах активного профиля;

Входное облако точек LAS должно быть создано в ЦФС РНОТОМОD.

Выберите Режим построения поверхности: Ball pivoting algorithm или Poisson surface reconstruction.

- 4. В поле **Выходной 3D-TIN** введите путь для сохранения файла или нажмите на кнопку, для того чтобы выбрать имя и путь в ресурсах активного профиля для сохранения 3D-TIN;
- 5. В разделе **Прореживание** выберите метод упрощения исходной поверхности 3D-TIN, построенной по входной матрице высот:
 - По критерию точности задайте Минимальное число треугольников в итоговой 3D-TIN и её максимально допустимое Отклонение от исходной поверхности 3D-TIN, в метрах;
 - По количественному критерию задайте Максимальное число треугольников в итоговой 3D-TIN.
- 6. [опционально] В разделе **Тайлы** установите флажок **Делить на тайлы** для того чтобы разделить поверхность 3D-TIN и её текстуры на фрагменты;
 - Рекомендуется установливать флажок **Делить на тайлы** при построении 3D-TIN на территории с большой площадью, для повышения быстродействия системы.
 - В поле Размер тайла задайте размер фрагментов текстур 3D-TIN, в пикселях;
 - В поле **Перекрытие тайлов** задайте перекрытие между фрагментами 3D-TIN, в пикселях.

Не рекомендуется устанавливать нулевой размер перекрытия.

- 7. [опционально] В разделе **Текстуры** установите флажок **Строить текстуры** для создания текстурированной поверхности 3D-TIN:
 - Задайте Размер текстуры;

- Рекомендуется задавать **Размер текстуры** превышающий **Размер тайла** как минимум в 2 раза. Увеличение данного параметра ведет к повышению разрешения текстуры и увеличению временных затрат на построение 3D-TIN.
- [опционально] Установите флажок **Выравнивание яркости** для выравнивания яркости между текстурами треугольников;
- [опционально] Чтобы использовать для вычислений все ядра процессора рабочей станции, в системе по умолчанию установлен флажок Использовать все доступные ядра ЦПУ. Снимите флажок для использования только одного ядра.
- 9. Нажмите ОК.

Чтобы построить 3D-TIN с использованием распределенной обработки, выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка.

В зависимости от размера области построения процесс может занять длительное время.

Рис. 70. Текстурированная поверхность 3D-TIN в окне программы PHOTOMOD 3D-Mod

Рис. 71. Текстурированная поверхность 3D-TIN в окне программы PHOTOMOD 3D-Mod (применена функция выравнивания яркости текстур)

Рис. 72. Поверхность 3D-TIN в окне программы PHOTOMOD 3D-Mod (функция построения текстур отключена)

6. Горизонтали

6.1. Меню «Горизонтали»

Меню **Горизонтали** содержит пункты меню для построения, редактирования, импорта и экспорта горизонталей.

Меню Горизонтали находится в меню ЦМР.

Пункты меню	Назначение
Открыть (Ctrl+O, V)	позволяет загрузить горизонтали (как и прочие векторные объекты) из векторных файлов с расширением *.x-data
Предыдущие	позволяет осуществить быстрый доступ к послед- ним загруженным файлам горизонталей
Сохранить	позволяет сохранить или перезаписать активный слой с горизонталями
Сохранить как	позволяет сохранить активный слой с горизонта- лями под новым именем

Таблица 4. Краткое описание меню «Горизонтали»

Пункты меню	Назначение
Сохранить выделенные как	позволяет сохранить <i>только</i> выделенные горизонтали
Закрыть	позволяет закрыть слой с горизонталями
Построить горизонтали	содержит пункты меню для построения горизон- талей по различным исходным данным
Импорт	содержит пункты меню для импорта горизонта- лей (аналогично прочим векторным объектам) из файлов с различными расширениями (см. раздел «Импорт векторных объектов» руковод- ства пользователя «Векторизация»)
Экспорт	содержит пункты меню для экспорта горизонта- лей (аналогично прочим векторным объектам) в файлы с различными расширениями (см. раз- дел «Экспорт векторных объектов» руковод- ства пользователя «Векторизация»)
Контроль пересечений горизонталей	позволяет выполнить проверку построенных го- ризонталей на пересечения/самопересечения, которые возникают в результате сглаживания горизонталей
Контроль горизонталей по пикетам	позволяет осуществить контроль качества по- строения горизонталей по регулярным пикетам, если они не были использованы при построении горизонталей
Сшивка горизонталей	позволяет выполнить сшивку построенных гори- зонталей в автоматическом либо ручном режи- мах
Проверка сшивки горизонталей	позволяет выполнить проверку горизонталей на разрывы, которые возникают в результате ручной либо автоматической сшивки горизонталей
Сведение горизонталей	позволяет выполнить сведение построенных го- ризонталей в автоматическом либо ручном ре- жимах (без сшивки в единый векторный объект)
Контроль вершин горизонталей	позволяет выполнить проверку высот вершин построенных горизонталей
Точность координат векторных объектов	позволяет настроить точность координат векторных объектов на уровне десятичных знаков и разрядов
Подготовка/экспорт листов горизонталей	позволяет сохранять, редактировать и экспорти- ровать в формат Панорама горизонтали, распо- ложенные в пределах заданных номенклатурных листов

6.2. Построение горизонталей по TIN

В системе предусмотрена возможность построения *горизонталей* — векторных линий, соединяющих точки с одинаковыми высотами на местности — по нерегулярной пространственной сети треугольников (TIN).

Чтобы построить горизонтали по TIN, выполните следующие действия:

- 1. Загрузите слой TIN.
- 2. Выберите ЦМР > Горизонтали > Построить горизонтали > По TIN... или используйте горячие клавиши Ctrl+N, C. Открывается окно Построить горизонтали по TIN.

😍 Построить горизонтали по TIN			×
Начальный уровень		536.0	▲ M
Интервал		10.0	▲ ▼ M
Основные горизонтали: чер	ез	1	интервал
👿 Утолщенные горизонтали: чер	ез	5	🔺 интервалов
👿 Дополнительные горизонтали: чер	оез 1/	2	📥 интервала
📝 Обрезать дополнительные горизонтали	1		
👿 Пропускать горизонтали длиной менее	•	5.0	▲ M
Сглаживание			
🖲 Нет 💿 Безье		🔘 Скруглен	ние углов
🕅 Авто-обновление			
		ОК	Отмена

Рис. 73. Параметры построения горизонталей по TIN

- 3. [опционально] В поле **Начальный уровень** введите минимальный уровень по высоте (Zmin), с которого строятся горизонтали.
 - Чтобы получить информацию о перепадах высот (Zmin, Zmax), щелкните правой кнопкой мыши по слою TIN в Диспетчере слоев и выберите Информация либо выберите Редактирование > Активный слой > Информация о слое. Выдается информационное окно, содержащее информацию о слое.
- В поле Интервал задайте высоту сечения рельефа в метрах. Шаг основных горизонталей равен высоте сечения рельефа (отображается в поле Основные горизонтали).
- 5. [опционально] Для построения утолщенных горизонталей по умолчанию установлен флажок **Утолщенные горизонтали**. Снимите флажок, чтобы не строить утолщенные горизонтали.

- Шаг **утолщенных горизонталей** по умолчанию равен пяти шагам основных горизонталей. Система позволяет задать произвольный шаг **утолщенных горизонталей** вручную.
- 6. [опционально] Для построения дополнительных горизонталей по умолчанию установлен флажок **Дополнительные горизонтали**. Снимите флажок, чтобы не строить дополнительные горизонтали.

Шаг дополнительных горизонталей по умолчанию равен половине шага основных горизонталей. Система позволяет задать произвольный шаг дополнительных горизонталей вручную.

Флажок Обрезать дополнительные горизонтали позволяет автоматически удалять фрагменты дополнительных горизонталей в областях с уменьшающимся заложением рельефа.

Рис. 74. Удаление фрагментов дополнительных горизонталей в областях с областях с уменьшающимся заложением рельефа.

- 7. [опционально] Для того чтобы исключить при построении короткие горизонтали, установите флажок **Пропускать горизонтали длиной менее** и введите минимальную длину горизонтали в метрах.
- 8. [опционально] Для того чтобы создать горизонтали в виде гладких кривых, в разделе Сглаживание выберите методы сглаживания Безье или Скругление углов.
 - [опционально] при выбранном методе сглаживания Безье задайте степень сглаживания с помощью ползунка.

😔 Построить горизонтали	по ТІМ			×
Начальный уровень			536.0	▲ M
Интервал			10.0	▲ M
Основные горизонтали	1:	через	1	интервал
👿 Утолщенные горизонта	али:	через	5	🔺 интервалов
👿 Дополнительные гориз	зонтали:	через 1/	2	🚔 интервала
📝 Обрезать дополнителы	ные горизо	нтали		
👿 Пропускать горизонтал	ли длиной і	менее	5.0	▲ M
Сглаживание				
🔘 Нет	🖲 Безье		🔘 Скругле	ение углов
Параметры сглаживания				
	0			
Авто-обновление				
			ОК	Отмена

Рис. 75. Параметры построения горизонталей по TIN

- [опционально] при выбранном методе сглаживания Скругление углов введите параметры сглаживания:
 - Радиус кривизны для сглаживающей кривой.

Установите флажок авто для того чтобы задать Радиус кривизны сглаживающей кривой автоматически.

 Точность — максимальное расстояние от сегмента ломаной до кривой на участке между двумя ближайшими вершинами.

😔 Построить горизонтали по TIN				×
Начальный уровень		536.0		≜ M
Интервал		10.0		▲ ▼ M
Основные горизонтали:	через	1		интервал
👽 Утолщенные горизонтали:	через	5		🗼 интервалов
📝 Дополнительные горизонтали:	через 1/	2		
👽 Обрезать дополнительные горизон	тали			
📝 Пропускать горизонтали длиной м	енее	5.0		▲ M
Сглаживание				
🔘 Нет 💿 Безье		🔘 Ск	руглен	ие углов
Параметры сглаживания				
Радиус кривизны	[авто	2.0	≜ M
Точность			0.5	▲ M
🕅 Авто-обновление				
		ОК		Отмена

Рис. 76. Параметры построения горизонталей по TIN

- [опционально] Установите флажок Авто-обновление для автоматического перестроения горизонталей, построенных по TIN, при редактировании слоя TIN.
- 10. Нажмите ОК. В результате происходит построение горизонталей в новом слое Горизонтали.

Для редактирования построенных горизонталей выберите Окна » Классификатор горизонталей (см. раздел 6.6).

6.3. Построение горизонталей в пакетном режиме

В системе предусмотрена возможность построения горизонталей в пакетном режиме. Пакетный режим позволяет одновременно построить и сохранить несколько файлов горизонталей в указанной папке.

Построение горизонталей в пакетном режиме возможно только в 64-битной версии системы.

Для того чтобы построить горизонтали по TIN в пакетном режиме, выполните следующие действия:

1. Выберите ЦМР > Горизонтали > Построить горизонтали > В пакетном режиме.... Открывается окно Построить горизонтали в пакетном режиме.

👴 Построить горизонтали в пакетно	м режиме					×
Data → Data → backup → classifier → delme → dem → mosaic		•	>			
Имя	Размер Вре	мя 📤	>>			
backup classifier	25.0 31.1	04.20				
delme	24.	04.20	<			
dem III	24.	05.20 [▼]	<<			
Начальный уровень		0.0		м		
Интервал		10.0	*	м		
Основные горизонтали:	через	1		интервал		
👿 Утолщенные горизонтали:	через	5		интервалов		
📝 Дополнительные горизонтали:	через 1/	2		интервала		
📝 Пропускать горизонтали длиной	менее	5.0	×	м		
Рабочая папка						
Выходная папка						
Сглаживание границы TIN Min				0		Max
					ОК	Отмена

Рис. 77. Параметры построения горизонталей в пакетном режиме

2. В дереве ресурсов выберите папку, содержащую векторные объекты.

Кнопка : позволяет отобразить все доступные ресурсы во вложенных файлах.
 Кнопка : позволяет обновить часть окна с ресурсами.

Кнопка 🔽 позволяет отобразить список из 10 последних выбранных ресурсов.

3. В списке выберите файл с горизонталями и нажмите на кнопку >, чтобы добавить слой.

Кнопки >> и << позволяют добавить/удалить из списка все добавленные файлы с векторных объектов, кнопка < позволяет убрать из списка выделенный файл.

- 4. Повторите действия 2-3 для добавления последующих файлов с векторными объектами.
- 5. Нажмите на кнопку ____ в поле Рабочая папка и выберите папку в ресурсах активного профиля.
- 6. Нажмите на кнопку ____ в поле Выходная папка и выберите папку в ресурсах активного профиля для сохранения результатов построения горизонталей.
- 7. Настройте необходимые параметры построения горизонталей аналогично Построение горизонталей по TIN.
- 8. Нажмите ОК для начала построения горизонталей в пакетном режиме.

Для редактирования построенных горизонталей выберите **Окна** » Классификатор горизонталей.

6.4. Построение горизонталей по матрице высот

В системе предусмотрена возможность построения горизонталей по матрице высот (DEM).

Для того чтобы построить горизонтали по матрице высот, выполните следующие действия:

- 1. Загрузите слой матрицы высот.
- 2. Выберите ЦМР > Горизонтали > Построить горизонтали > По матрице высот.... Открывается окно Параметры построения горизонталей.

😎 Параметры построения горизонталей		X
Параметры матрицы высот		
Мин. высота Ма 529.638 67	икс. высота 71.232	
🕼 Сглаживать		
🕅 Сглаживание по Гауссу		
Уровень сглаживания 0.5		
Размер апертуры ЗхЗ 💌		
Строить внутри выделенных полигонов		
Параметры горизонталей		
Начальный уровень	0.0	м
Интервал	10.0	м
Основные горизонтали через	1	интервал
🔲 Утолщенные горизонтали через	5	интервалов
🔲 Дополнительные горизонтали через 1 /	2	интервала
🔽 Сглаживание 0		100
•	30	
🔲 Пропускать горизонтали длиной менее	0	∧ ▼ M
	ОК	Cancel

Рис. 78. Параметры построения горизонталей по матрице высот

3. [опционально] Для того чтобы применить операцию сглаживания матрицы высот перед построением горизонталей, установите флажок Сглаживать в разделе Матрица высот. Введите степень сглаживания в поле Уровень сглаживания (максимальное сглаживание происходит при значении 1).

Для сглаживания в каждом узле матрицы используется информация о соседних узлах. Чтобы настроить количество соседних узлов матрицы высот, выберите в списке Размер апертуры.

Мин. высота и **Макс. высота** — отображают информацию о перепаде высот (Zmin, Zmax) матрицы высот.

4. [опционально] В поле **Начальный уровень** введите минимальный уровень по высоте (Zmin), с которого строятся горизонтали.

- 5. В поле Интервал задайте высоту сечения рельефа в метрах. Шаг основных горизонталей равен высоте сечения рельефа (отображается в поле Основные горизонтали).
- 6. [опционально] Для построения утолщенных горизонталей по умолчанию установлен флажок **Утолщенные горизонтали**. Снимите флажок, чтобы не строить утолщенные горизонтали.

Шаг утолщенных горизонталей по умолчанию равен пяти шагам основных горизонталей. Система позволяет задать произвольный шаг утолщенных горизонталей вручную.

7. [опционально] Для построения дополнительных горизонталей по умолчанию установлен флажок **Дополнительные горизонтали**. Снимите флажок, чтобы не строить дополнительные горизонтали.

Шаг **дополнительных горизонталей** по умолчанию равен половине шага основных горизонталей. Система позволяет задать произвольный шаг **дополнительных гори-** зонталей вручную.

- 8. [опционально] Для того чтобы создать горизонтали в виде гладких кривых, установите флажок **Сглаживание** и задайте степень сглаживания с помощью ползунка.
- 9. [опционально] Для того чтобы исключить при построении короткие горизонтали, установите флажок **Пропускать горизонтали длиной менее** и введите минимальную длину горизонтали в метрах.
- 10. Нажмите ОК. В результате происходит построение горизонталей в новом слое *Горизонтали*.

Для редактирования построенных горизонталей выберите **Окна** » Классификатор горизонталей.

6.5. Построение горизонталей по гладкой модели

В системе предусмотрена возможность построения горизонталей в виде гладких кривых с заданной точностью. Построение горизонталей этим способом позволяет избежать пересечения горизонталей.

Исходными данными для построения горизонталей являются векторные объекты, полученные в результате стереовекторизации. При необходимости существует возможность предварительного построения полигона для использования его в качестве границы области построения горизонталей.

Для того чтобы построить горизонтали по гладкой модели, выполните следующие действия:

- 1. Загрузите слой, содержащий векторные объекты.
- 2. Выберите **ЦМР > Горизонтали > Построить горизонтали > Гладкая модель...** Открывается окно **Параметры построения горизонталей по гладкой модели**.

Исходные слои					
auto_pts_5m_filtered (Векторы)				
Граница рабочей област	ги				
🔘 Прямоугольная					
Выпуклая					
🔘 Использовать полиго	оны со слоя				
auto_pts_5m_filtered	(Векторы)				-
Только выделенны	le				
Точность ЦМР	0.1	▼ M			
Точность горизонталей	1.0	м			
	1	· ···			
Нараметры горизонтале			520.0		
Пачальный уровень			10.0	×	M
интервал			1	•	м
Основные горизонта/	и:	через	1		интервал
Утолщенные горизон	тали:	через	5	×	интервалов
🔲 Дополнительные гор	изонтали:	через 1/	2	×	интервала
Минимальное число у Помальное ч	узлов в гори	изонтали	5		
🔲 В виде кривых					
					бновить
					CHOUND

Рис. 79. Параметры построения горизонталей по гладкой модели

3. В разделе **Исходные слои** установите флажки у открытых слоев, на основе которых происходит построение горизонталей.

- 4. В разделе Граница рабочей области установите границу области построения:
 - Прямоугольная для построения прямоугольной границы;
 - Выпуклая для построения границы по крайним пикетам выбранного слоя;
 - Использовать полигоны со слоя выберите из списка векторный слой, на котором находятся полигоны, используемые в качестве границы рабочей области.

Чтобы установить границу области построения только из выделенных полигонов, установите флажок **Только выделенные**.

5. В поле **Точность ЦМР** введите допустимое отклонение значений высот горизонталей от исходного векторного слоя в метрах.

Параметр Точность ЦМР определяется, исходя из значений ошибок при создании векторных объектов с помощью коррелятора в стереорежиме.

- 6. В поле **Точность горизонталей** введите максимальное отклонение по высоте горизонталей от матрицы высот.
- 7. [опционально] В поле **Начальный уровень** введите минимальный уровень по высоте (Zmin), с которого строятся горизонтали.

- Чтобы получить информацию о перепадах высот (Zmin, Zmax), щелкните правой кнопкой по слою TIN в *Диспетчере слоев* и выберите **Информация** либо выберите **Редактирование Активный слой Информация о слое**. В результате выдается информационное окно, содержащее информацию о слое.
- В поле Интервал задайте высоту сечения рельефа в метрах. Шаг основных горизонталей равен высоте сечения рельефа (отображается в поле Основные горизонтали).
- 9. [опционально] Для построения утолщенных горизонталей по умолчанию установлен флажок **Утолщенные горизонтали**. Снимите флажок, чтобы не строить утолщенные горизонтали.

Шаг **утолщенных горизонталей** по умолчанию равен пяти шагам основных горизонталей. Система позволяет задать произвольный шаг **утолщенных горизонталей** вручную.

10. [опционально] Для построения дополнительных горизонталей по умолчанию установлен флажок **Дополнительные горизонтали**. Снимите флажок, чтобы не строить дополнительные горизонтали.

- Шаг **дополнительных горизонталей** по умолчанию равен половине шага основных горизонталей. Система позволяет задать произвольный шаг **дополнительных гори-** зонталей вручную.
- 11. [опционально] Для построения горизонталей с числом узлов больше заданного значения по умолчанию установлен флажок Минимальное число узлов в горизонтали. Введите число узлов в поле ввода для исключения горизонталей с меньшим количеством узлов.
- 12. [опционально] Для построения горизонталей **в виде кривых** установите соответствующий флажок. По умолчанию горизонтали строятся в виде ломаных линий.
- 13. Нажмите ОК. В результате происходит построение горизонталей в новом слое Горизонтали.

6.6. Редактирование горизонталей

Для редактирования параметров отображения горизонталей в системе предусмотрен пункт меню **Окна > Классификатор горизонталей**. Параметры отображения сохраняются и применяются при создании/загрузке нового слоя горизонталей.

Горизонтали	×
Горизонтали (Векторы (2))	
🛞 🖉 🔲 1 🏹 Основные горизонтали	
🕫 📄 📔 2 🚺 Утолщенные горизонтали	
🕫 📄 📔 🌠 Дополнительные горизонтали	

Рис. 80. Классификатор горизонталей

Окно Горизонтали позволяет настроить следующие параметры:

- 🕏 позволяет скрыть/отобразить выбранный тип горизонталей в 2D-окне;
- 🖉 позволяет выбрать тип редактируемых горизонталей;
- Цвет слоя позволяет настроить цвет отображения выбранного типа горизонталей;

Чтобы изменить цвет горизонтали, дважды щелкните мышью по кнопке Цвет слоя. Открывается окно Цвет. Выберите цвет горизонтали и нажмите ОК.

 поле ввода позволяет задать фиксированную при изменении масштаба толщину выбранного типа горизонталей.

Чтобы изменить толщину горизонтали, задайте в поле ввода толщину (при этом толщина остается фиксированной при изменении масштаба).

6.7. Операции с горизонталями

6.7.1. Сохранение горизонталей

Горизонтали представляют собой полилинии, которые состоят из прямолинейных сегментов (ломаные) или дуговых сегментов (кривые). Сохранение, загрузка и редактирование горизонталей производится таким же образом, как и любого векторного слоя (см. в руководстве пользователя «Векторизация»).

Для редактирования горизонталей служат инструменты редактирования полилиний, описание см. в руководстве пользователя «Векторизация«.

Для сохранения и перезаписи активного слоя с горизонталями выберите **ЦМР** > **Горизонтали** > **Сохранить** либо щелкните правой кнопкой мыши по имени слоя в *Диспетчере слоев* и выберите в контекстном меню **Сохранить**.

Для сохранения активного слоя под новым именем выберите **ЦМР > Горизонтали > Сохранить как...** либо щелкните правой кнопкой мыши по имени слоя в *Диспетчере слоев* и выберите в контекстном меню **Сохранить как...**, задайте имя и место для сохранения в ресурсах активного профиля.

Для сохранения *только* выделенных горизонталей выделите все горизонтали, которые необходимо сохранить, и выберите **ЦМР > Горизонтали > Сохранить** выделенные как.... При этом привязка векторных объектов к классификатору сохраняется.

Для того чтобы вернуться к состоянию векторного слоя на момент последнего сохранения, выберите **Векторы > Вернуться к сохраненному**.

Слой Горизонтали открывается также, как слой с обычными векторными объектами, см. раздел 5.3.2.

Система позволяет сохранять, редактировать и экспортировать в формат Панорама горизонтали, расположенные в пределах заданных номенклатурных листов. Формат Панорама представляет собой обменный формат с расширениями *.sit и *.map, который используется в ГИС Карта.

6.7.2. Экспорт листов горизонталей

Система позволяет сохранять, редактировать и экспортировать в формат Панорама горизонтали, расположенные в пределах заданных номенклатурных листов. Формат Панорама представляет собой обменный формат с расширениями *.sit и *.map, который используется в ГИС Карта.

В системе предусмотрена возможность обрезки векторных объектов одного слоя по границам полигонов другого слоя (Векторы > Геометрия > Обрезать векторы по выделенным полигонам). Так как и горизонтали, и границы номенклатурных листов так же являются векторными объектами, то данная функция тоже может быть использована для сохранения горизонталей в пределах выбранных номенклатурных листов (см. раздел «Обрезка векторов по выделенным полигонам» руководства пользователя «Векторизация»).

Для этого выполните следующее:

- 1. Создайте номенклатурные листы (см. раздел «Генераторы нарезки на листы» руководства пользователя «Векторизация»);
- 2. Выделите номенклатурные листы, в границах которых необходимо выполнить сохранение/экспорт горизонталей;
- 3. Выберите **ЦМР > Горизонтали > Подготовка/экспорт листов горизонталей...**. Открывается окно **Подготовка/экспорт листов горизонталей**:

😎 Подготовка/экспорт листов горизонталей	23
Общее Обработка и деление на листы Экспорт в ГИС Панорама	
📝 Обработка и деление на листы	
🕅 Экспортировать в SIT	
Корневая папка с горизонталями	
/Techsupport/Waldkirch_Group/Waldkirch_docs/Data	
Искать в подпапках	
Атрибут с именем выходного листа Name	
Выходная папка	
/Techsupport/Waldkirch_Group/Waldkirch_docs	
🗹 Удалять промежуточные данные	
ОК Отме	на

Рис. 81. Окно «Подготовка/экспорт листов горизонталей»

- 4. В закладке Общее задайте следующие параметры:
 - [опционально] Снимите флажок **Обработка и деление на листы**, для того чтобы не выполнять сохранение горизонталей в пределах выбранных номенклатурных листов (см. закладку **Обработка и деление на листы**);

- [опционально] Снимите флажок Экспортировать в SIT, для того чтобы не выполнять экспорт горизонталей в пределах выбранных номенклатурных листов в формат Панорама (см. закладку Экспорт в ГИС Панорама);
- В разделе Корневая папка с горизонталями нажмите на кнопку ____ и выберите папку с исходными горизонталями в ресурсах активного профиля;
 - [опционально] Снимите флажок Искать во вложенных папках, для того чтобы не выполнять поиск исходных горизонталей во вложенных каталогах;
- В поле Атрибут с именем выходного листа введите имя атрибута, в котором записаны имена номеклатурных листов;
 - Имя атрибута, в котором записываются имена номенклатурных листов (по умолчанию — Name) задается при создании номенклатурных листов (см. раздел «Генераторы нарезки на листы» руководства пользователя «Векторизация»). Для того чтобы проверить имя атрибута, выделите номенклатурный лист и выберите Окна » Атрибуты объектов.
- В поле **Выходная папка** введите путь для сохранения горизонталей или нажмите на кнопку, для того чтобы выбрать имя каталога и путь в ресурсах активного профиля для сохранения горизонталей в пределах выбранных номенклатурных листов;
- [опционально] Снимите флажок Удалить промежуточные данные для того чтобы не удалять данные обработки после завершения вычислений;
- 5. В закладке **Обработка и деление на листы** задайте параметры редактирования горизонталей в пределах выбранных номенклатурных листов:
 - Для того чтобы сохранить горизонтали в пределах выбранных номенклатурных листов (без дополнительного редактирования) снимите все флажки в закладке Обработка и деление на листы.

😌 Подготовка/экспорт листов горизонталей	X
Общее Обработка и деление на листы Экспорт в ГИС Панорама	
Объединять горизонтали на расстоянии 1.0	
🕼 Корректировать направление цифрования выходных горизонталей	
📝 Постановка точечных вершин/впадин в выходные горизонтали	
Шаг горизонталей 10.0	
Смещение высоты в вершине/впадине в долях шага горизонталей 1/ 3.0	
Исправлять плоские участки при постановке вершин/впадин	
Высота вершин/впадин из матрицы высот	
/Techsupport/Waldkirch_Group/Waldkirch_docs/Data/dem/1m.x-dem	
✓ Создавать бергштрихи с длиной 30.0	
📝 Заполнить недостающие значения атрибутов (горизонтали, вершины/впадины, бергштрихи)	
ОК Отме	на

Рис. 82. Закладка «Обработка и деление на листы»

- [опционально] Для автоматической сшивки горизонталей с «разрывами» в системе по умолчанию установлен флажок Объединять горизонтали на расстоянии. Снимите флажок для того чтобы не сшивать горизонтали или задайте максимальное расстояние в метрах между горизонталями, при котором происходит сшивка горизонталей;
- [опционально] Снимите флажок, для того чтобы не Корректировать направление цифрования выходных горизонталей (только для формата Панорама);
- [опционально] Снимите флажок Постановка точечных вершин/впадин в выходные горизонтали для того чтобы не добавлять к горизонталям точечные векторные объекты, обозначающие вершины и впадины;
- В поле Шаг горизонталей укажите шаг исходных горизонталей;

Л Откройте слой с горизонталями для того чтобы взять данную информацию из проекта.

 Для того чтобы настроить параметры расчета высот точечных объектов, обозначающих вершины и впадины, задайте Смещение высоты в вершине/впадине в долях шага горизонателей, относительно горизонтали, ближайшей к вершине/впадине;

Например, в случае, если Смещение высоты в вершине/впадине в долях шага горизонателей составляет 1/3 от шага горизонталей, то высота точки, обозначающей вершину возвышенности, будет составлять сумму значения высоты ближайшей к точке горизонтали и 1/3 шага горизонталей. Округление высот вершин/впадин происходит соответственно настройкам, которые задаются в закладке Экспорт в ГИС Панорама (см. ниже).

Система позволяет уточнять высоты точечных объектов, обозначающих вершины и впадины, используя матрицу высот, совместно с параметрами Шаг горизонталей и Смещение высоты в вершине/впадине в долях шага горизонателей (см. ниже).

- [опционально] Снимите флажок, для того чтобы не Исправлять плоские участки при постановке вершин/впадин;
- [опционально] Для уточнения высот точечных объектов, обозначающих вершины и впадины, в системе по умолчанию установлен флажок Высота вершин/впадин из матрицы высот. Снимите флажок для того чтобы не учитывать матрицу высот при расчете высот точечных объектов, обозначающих вершины и впадины, или нажмите на кнопку ... для выбора матрицы высот в ресурсах активного профиля;
- [опционально] Для создания бергштрихов, при сохранении горизонталей в пределах выбранных номенклатурных листов, в системе по умолчанию установлен флажок Создавать бергштрихи с длиной, которая задается пользователем. Снимите флажок для того чтобы не создавать бергштрихи или введите длину бергштрихов, в метрах;
- [опционально] Снимите флажок Заполнить недостающие значения атрибутов (горизонтали, вершины/впадины, бергштрихи), если выполнение данной операции не требуется;

Необходимость заполнения значений атрибутов может возникнуть, например, для дополнительных векторных объектов (горизонталей) созданных вручную.

6. В закладке **Экспорт в ГИС Панорама** задайте параметры экспорта горизонталей в обменный формат Панорама в пределах выбранных номенклатурных листов:

😽 Подготовка/экспорт листов горизонталей	X
Общее Обработка и деление на листы Эксп	орт в ГИС Панорама
Экспорт горизонталей в SIT	
Выходной каталог	C:\Users\guk\Downloads
Файл с классификатором	C:\Program Files\PHOTOMOD6 x64\MapView11\ru\ma
Код горизонталей в классификаторе	21200000
Имя кода горизонталей в классификаторе	ГОРИЗОНТАЛИ ОСНОВНЫЕ
Код утолщенных горизонталей	21100000
Имя кода утолщенных горизонталей	ГОРИЗОНТАЛИ УТОЛЩЕННЫЕ
Код вершин/впадин в классификаторе	12120000
Имя кода вершин/впадин в классификаторе	ОТМЕТКИ ВЫСОТ
Код бергштрихов в классификаторе	23100000
Имя кода бергштрихов в классификаторе	БЕРГШТРИХИ
Округление высот вершин/впадин	1.0
	ОК Отмена

Рис. 83. Закладка «Экспорт в ГИС Панорама»

- В поле **Выходной каталог** введите путь для сохранения файлов или нажмите на кнопку, для того чтобы выбрать каталог для сохранения файлов в файловой системе *Windows*;
- В поле **Файл с классификатором** нажмите на кнопку ____, для того чтобы указать путь к файлу с классификатором;

Файлы с классификатором по умолчанию расположены в каталогах С:\Program Files\PHOTOMOD6 x64\MapView11\ru и C:\Program Files\PHOTOMOD6 x64\MapView11\en. Например, при экспорте горизонталей, расположенных в пределах номенклатурных листов с масштабов 1:2000 выберите файл с классификатором map2000.rsc.

- [опционально] Отредактируйте Код горизонталей в классификаторе, если необходимо;
- [опционально] Отредактируйте **Имя кода горизонталей в классификаторе** если необходимо;
- [опционально] Отредактируйте Код утолщенных горизонталей если необходимо;

- [опционально] Отредактируйте **Имя кода утолщенных горизонталей** если необходимо;
- [опционально] Отредактируйте Код вершин/впадин в классификаторе если необходимо;
- [опционально] Отредактируйте **Имя кода вершин/впадин в классифика**торе если необходимо;
- [опционально] Отредактируйте Код бергштрихов в классификаторе если необходимо;
- [опционально] Отредактируйте **Имя кода бергштрихов в классификаторе** если необходимо;
- [опционально] Настройте Округление высот вершин/впадин;
- 7. Нажмите ОК.

Горизонтали, расположенные в пределах выбранных номенклатурных листов, сохраняются в заданной выходной папке в ресурсах активного профиля, в отдельных каталогах, имена которых соответствуют именам номенклатурных листов.

Файлы обменного формата Панорама сохраняются в заданном выходном каталоге в файловой системе *Windows*.

Для того что бы проверить файлы обменного формата Панорама выберите **Сервис > ГИС Панорама 11 Мини**. Открывается окно программы *ГИС Панорама Мини*. В окне программы *ГИС Панорама Мини* выберите **Файл > Открыть** и выберите обменные файлы с расширениями *.sit в заданном выходном каталоге в файловой системе *Windows*.

Рис. 84. Окно программы «ГИС Панорама Мини»

6.7.3. Сшивка горизонталей

В системе предусмотрена возможность сшивки построенных горизонталей в автоматическом либо ручном режимах.

Для того чтобы осуществить сшивку горизонталей **вручную**, выполните следующие действия:

- 1. Загрузите либо создайте слой с горизонталями.
- 2. Выберите **ЦМР > Горизонтали > Открыть** и откройте файл, содержащий горизонтали соседней стереопары. Открывается окно **Загрузка**.
- 3. Нажмите на кнопку **Добавить в слой ... новые данные, не удаляя имеющи**еся для добавления горизонталей соседней стереопары в исходный слой.

4. Используйте инструменты редактирования полилиний (а также снаппинг) для ручной сшивки горизонталей (см. разделы «Меню 'Топология'» и «Режим снаппинга» в руководстве пользователя «Векторизация»).

Для того чтобы запустить процесс автоматической сшивки горизонталей, выполните следующие действия:

1. Выберите **ЦМР > Горизонтали > Сшивка горизонталей...**. Открывается окно **Параметры** на закладке **Исходные горизонтали**.

😎 Параметры		
Исходные горизонтали Парам	етры	
E Destortions		Горизонтали.x-data Горизонтали2.x-data
Т: Ф Имя ▽	Размер Вр	
all_class_rsc2000.x-data	10.14 M5 07.	
ascii-a.x-data	8.34 ME 06.	
autoseam_Inpho.x-data	105.50 KB 06.	1
del_lines_pickets.x-data	2.85 MB 08. 🗕	1
delme.x-data	32.50 КБ 24. >	
lines_pickets.x-data	2.85 MB 23.	4
pickets_copy.x-data	2.85 MB 08. <	
ROIs.x-data	54.00 KB 23.	
test.x-data	10.14 MБ 12. <	
test_delete_segment.x-data	10.33 MB 24.	
www.x-data	10.33 ME 06.	
Горизонтали.x-data	1.05 MB 28.	
Горизонтали2.x-data	1.05 M5 28.	
Точки триангуляции.x-data	52.50 KB 06.	
		ОК Отмена

Рис. 85. Параметры сшивки горизонталей на закладке «Исходные горизонтали»

2. В дереве ресурсов выберите папку, содержащую горизонтали.

Кнопка 🔚 позволяет отобразить все доступные ресурсы во вложенных файлах. Кнопка 😰 позволяет обновить часть окна с ресурсами.

3. В списке выберите файл горизонталей и нажмите на кнопку >, чтобы добавить слой для сшивки.

, Кнопки >>> и << позволяют добавить/удалить из списка все добавленные файлы с горизонталями, кнопка > позволяет убрать из списка выделенный файл, содержащий горизонтали.

4. Повторите действия 2-3 для добавления последующих файлов с горизонталями.

Для сшивки необходимо выбрать как минимум два файла, содержащих горизонтали.

5. Перейдите на закладку Параметры.

🖶 Параметры			
Исходные горизонтали Параме	гры		1
Максимальное расстояние:	1.0 14 M		
Удаляемая часть горизонтали:	1.0 X M		
Степень сглаживания			
С Меньшая	• Средняя	🔘 Большая	
		ОК	Отмена

Рис. 86. Параметры сшивки горизонталей на закладке «Параметры»

- 6. [опционально] В поле **Максимальное расстояние** введите максимальное расстояние в метрах между горизонталями, при котором происходит сшивка горизонталей.
- 7. [опционально] В поле **Удаляемая часть горизонтали** введите допустимый размер удаляемой части горизонтали в метрах.
- 8. В разделе Степень сглаживания установите степень сглаженной горизонтали от вершин несглаженной: Меньшая, Средняя либо Большая.
- 9. Нажмите ОК. В *Диспетчере слоев* создается новый векторный слой, содержащий сшитые горизонтали.

В системе так же предусмотрена операция сведения горизонталей (без сшивки горизонталей в единые векторные объекты и создания нового слоя).

6.7.4. Проверка качества сшивки горизонталей

В системе предусмотрена возможность проверки горизонталей на разрывы, которые возникают в результате ручной либо автоматической сшивки горизонталей.

Для того чтобы осуществить проверку сшивки горизонталей, выберите **ЦМР > Горизонтали > Проверка сшивки горизонталей...**. Открывается окно **Параметры**. В поле ввода **Контрольное расстояние** введите максимальное расстояние в метрах между горизонталями, при котором происходит поиск разрывов горизонталей, и нажмите OK.

В случае если обнаружены разрывы горизонталей, открывается окно Ошибочные вершины горизонталей.

🗬 Ошибочные вершины горизонталей	- O ×
δδι	
N=0 X=6442986.423 Y=4969628.800 Z=130.915 DL=0.166 N=1 X=6443862.074 Y=4970043.524 Z=130.907 DL=0.203 N=2 X=6443766.880 Y=4970073.552 Z=129.016 DL=0.242	

Рис. 87. Ошибочные вершины горизонталей

В окне отображается список разрывов горизонталей, где:

- N порядковый номер разрыва;
- Х, Ү, Z координаты середины разрыва;
- DL расстояние между горизонталями в метрах.

Щелчком мыши выберите строку в списке. В результате маркер позиционируется в середину разрыва и отображается в 2D-окне.

Чтобы «сшить» разрыв горизонталей, выберите горизонталь в списке и нажмите на кнопку **б**.

Чтобы «сшить» разрывы всех найденных горизонталей, нажмите на кнопку **б**.

6.7.5. Сведение горизонталей

В системе предусмотрена возможность сведения построенных горизонталей (без сшивки) в автоматическом либо ручном режимах.

Для того чтобы осуществить сведение горизонталей **вручную**, выполните следующие действия:

1. Загрузите либо создайте слой с горизонталями.

- 2. Выберите **ЦМР > Горизонтали > Открыть** и откройте файл, содержащий горизонтали соседней стереопары. Открывается окно **Загрузка**.
- 3. Нажмите на кнопку **Добавить в слой ... новые данные, не удаляя имеющи**еся для добавления горизонталей соседней стереопары в исходный слой.
- 4. Используйте инструменты редактирования вершин (а также снаппинг) для ручного сведения горизонталей (см. разделы «Редактирование векторных объектов» и «Режим снаппинга» в руководстве пользователя «Векторизация»).

Для того чтобы запустить процесс автоматического сведения горизонталей, выполните следующие действия:

1. Выберите **ЦМР** > Горизонтали > Сведение горизонталей.... Открывается окно Сведение горизонталей.

😍 Сведение горизонталей	
Выберите два слоя с горизонталями	
gorizontali_test_1 (Горизонтали) gorizontali_test_2 (Горизонтали)	
Максимальное отклонение (м) 300.0	
Не изменять верхний слой	
🔲 Соединить с ближайшей вершиной	
ОК	Отмена

Рис. 88. Параметры сведения горизонталей

- 2. В списке загруженных векторных слоев выберите *деа* слоя с горизонталями;
- В поле Максимальное отклонение введите максимальное расстояние в метрах между горизонталями, при котором происходит сведение горизонталей;
- [опционально] Установите флажок Не изменять верхний слой для того чтобы при сведении перемещать вершины горизонталей только в одном из выбранных слоев (иначе перемещение вершин при сведении горизонталей произойдет в обоих выбранных слоях);

Кнопки 👚 и 🖖 позволяют изменить позицию выбранного слоя в списке загруженных векторных слоев. 5. Нажмите ОК. Находящихся в разных слоях конечные вершины горизонталей, расстояние между которыми не превышает Максимальное отклонение перемещаются в одну точку (среднее положение в плане — в случае, если флажок Не изменять верхний слой не установлен), иначе — конечные вершины из нижнего слоя будут перемещены в положение вершин из верхнего слоя.

Если для «стыкующихся» горизонталей одной высоты, на расстоянии не превышающем **Максимальное отклонение**, будут обнаружены вершины в количестве 3 и более — открывается окно **Несведенные точки**, содержащая список вершин, которым, возможно, требуется правка **вручную**. При выделении строки в таблице, в окне **Несведенные точки**, маркер перемещается в соответствующую вершину.

Несве,	денные точки			
N	Х	γ	Точек	
0	736365.569	260625.567	3	
1	736371.286	260610.750	3	
2	736472.301	260648.402	3	
3	736514.388	260486.211	3	
				ОК Отмена

Рис. 89. Окно «Несведенные точки»

В системе так же предусмотрена операция сшивки горизонталей (с созданием нового слоя, содержащего горизонтали, сшитые в единые векторные объекты).

6.7.6. Точность координат векторных объектов

В системе предусмотрена возможность настройки точности координат векторных объектов на уровне десятичных знаков и разрядов.

Необходимость задать число знаков после десятичного разделителя, например, для высот горизонталей, может возникнуть после пересчета координат векторных объектов из одной системы координат в другую (см. раздел «Преобразование координат объектов» руководства пользователя «Векторизация»).

Для того чтобы задать точность координат векторных объектов выполните следующее:

- 1. Создайте или загрузите векторный слой;
- 2. [опционально] Выделите векторные объекты;

3. Выберите **ЦМР > Горизонтали > Точность координат векторных объектов**. Открывается окно **Точность векторных объектов**.

 Точность координаты Х точность координаты У точность координаты У точность координаты У 	
Точность координаты Y 1 знаков после десятичного разд	елителя
	елителя
🕼 Точность координаты Z 🛛 1 👘 знаков после десятичного разд	елителя

Рис. 90. Окно «Точность векторных объектов»

- 4. [опционально] Снимите флажок **Выделенные объекты** для того чтобы применить настройки точности координат для всех объектов векторного слоя;
- 5. Задайте количество знаков после десятичного разделителя для координат XYZ;
 - Лени заданном количестве знаков после десятичного разделителя равном нулю координаты векторных объектов будут округлены до целых чисел.
 - При отрицательных значениях количества знаков после десятичного разделителя координаты векторных объектов округляются по десятичным разрядам (например значение «-1» приведет к округлению единиц, «-2» к округлению десятков, и т. д.).
- 6. Нажмите ОК. В результате происходит перестроение всех или выбранных объектов векторного слоя в соответствии с заданной точностью координат.

6.8. Контроль точности построения горизонталей

6.8.1. Контроль пересечений горизонталей

В системе предусмотрена возможность проверки построенных горизонталей на пересечения/самопересечения, которые возникают в результате сглаживания горизонталей.

Для того чтобы проверить горизонтали на пересечения, выполните следующие действия:

- 1. Загрузите либо создайте слой с горизонталями.
- 2. Выберите **ЦМР > Горизонтали > Контроль пересечений горизонталей...**. Открывается окно **Параметры**.

Рис. 91. Параметры контроля пересечения горизонталей

 [опционально] Для проверки пересечений только соседних горизонталей по умолчанию установлен флажок Проверять только соседние горизонтали. Снимите флажок для проверки всех горизонталей на наличие пересечений.

Процесс проверки построенных горизонталей на пересечения может занять длительное время.

4. Нажмите ОК. Запускается процесс проверки построенных горизонталей на пересечения. После завершения процесса открывается окно **Точки пересечения**.

쿽 Точки пересечения	<u> </u>
📴 🖪	
0: X=6443922.309 Y=4970540.617)	▲
1: X=6443734.518 Y=4969848.192)	
2: X=6443728.653 Y=4969986.547)	
3: X=6443833.458 Y=4970221.047)	
4: X=6443371.144 Y=4969626.433)	
5: X=6443714.793 Y=4970423.954	
6: X=6443718.977 Y=4970477.388)	
7: X=6444394.393 Y=4970095.251	
8: ×=6444466.758 Y=4970420.202)	
9: ×=6443652.118 Y=4970550.618)	
10: X=6443702.224 Y=4970523.954)	
11: X=6443700.728 Y=4970699.914	
12: X=6443697.877 Y=4970542.713	
13: X=6443709.453 Y=4970442.252	
14: X=6443716.487 Y=4970475.444	
15: X=6443787.984 Y=4970327.338)	
16: X=6443797.809 Y=4970567.974)	
17: X=6444038.246 Y=4969639.866)	-

Рис. 92. Координаты точек пересечения горизонталей

Для того чтобы экспортировать список, содержащий точки пересечения горизонталей в файл с расширением csv, нажмите на кнопку 📴.

Для того чтобы создать новый слой, содержащий точки пересечения в виде пикетов, нажмите на кнопку

5. Щелчком мыши выберите точку в списке. В результате маркер позиционируется в точку пересечения и отображается в 2D-окне.

Рис. 93. Контроль пересечений горизонталей

6. Используйте инструменты редактирования полилиний для редактирования горизонталей и исправления ошибок пересечения (описание см. в руководстве пользователя «Векторизация»).

6.8.2. Контроль горизонталей по пикетам

В системе предусмотрена возможность контроля качества построения горизонталей по регулярным пикетам, если они не были использованы при построении горизонталей.

Для запуска процесса проверки горизонталей необходимо, чтобы слой *Горизонтали* и слой *Векторы* (содержащий пикеты) были загружены и отображались в *Диспетчере* слоев.

Для того чтобы запустить процесс проверки горизонталей по пикетам, выполните следующие действия:

- 1. Загрузите либо создайте слой, содержащий пикеты.
- 2. Сделайте слой с горизонталями активным.

3. Выберите **ЦМР > Горизонтали > Контроль горизонталей по пикетам**. Открывается окно **Выбор слоя пикетов**.

😎 Выбор слоя пикетов		
pickets_copy (Векторы)		
	ОК	Отмена

Рис. 94. Выбор слоя пикетов

- 4. Выберите слой, который содержит пикеты.
- 5. Нажмите ОК. Открывается окно Параметры.

😎 Параметры			
Максимальное отклонение:	0.05	м №	
🔲 Анализировать пикеты ме	жду горизонт	алями с одинаковой	высотой
		ОК	Отмена

Рис. 95. Параметры контроля горизонталей по пикетам

- 6. В поле **Максимальное отклонение** введите максимальное отклонение горизонталей по высоте (в метрах) от значения высоты пикетов.
- [опционально] Чтобы включить в процесс проверки пикеты, которые находятся на горизонталях с одинаковой высотой (например N=27 (Ext=597.0, 597.0) и N=28 (Ext=597.0, 597.0)), установите флажок Анализировать пикеты между горизонталями с одинаковой высотой.
- 8. Нажмите ОК. Открывается окно Контроль горизонталей по пикетам.

😞 Ko	нтроль горизонталей по пикетам	
P2		
N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9	X=6443130.207 Y=4970018.689 Z=162.398 Ext=[164.0, 165.0] X=6443130.663 Y=4970008.620 Z=163.052 Ext=[165.0, 166.0] X=6443131.070 Y=4963998.541 Z=163.585 Ext=[166.0, 167.0] X=6443131.741 Y=4963988.653 Z=164.771 Ext=[167.0, 168.0] X=6443132.767 Y=4963969.495 Z=168.878 Ext=[170.0, 177.0] X=6443135 Y=4963969.495 Z=168.878 Ext=[170.0, 177.0] X=6443135 Y=4963960.025 Z=171.004 Ext=[171.0, 172.0] Z'=171.507 X=6443135.422 Y=4963918.263 Z=170.541 Ext=[170.0, 177.0] X=6443133.542 Y=4963908.425 Z=167.974 Ext=[165.0, 166.0] X=6443133.625 Y=4963908.425 Z=167.974 Ext=[165.0, 166.0] X=6443133.625 Y=4963908.7253 Z=165.285 Ext=[155.0, 160.0] X=6443133.625 Y=4965908.625 Z=167.974 Ext=[165.0, 160.0] X=6443133.625 Y=4965908.625 Z=167.974 Ext=[165.0, 160.0]	
N=10 N=11 N=12 N=13 N=14 N=15 N=16	X=6443130.759 Y=43659873.563 Z=157.175 Ext=[151.0, 152.0] X=6443128.544 Y=43659860.737 Z=151.208 Ext=[147.0, 148.0] X=6443125.909 Y=43659847.288 Z=144.189 Ext=[143.0, 144.0] X=6443125.716 Y=49659840.441 Z=139.945 Ext=[141.0, 142.0] X=6443125.254 Y=49659702.618 Z=130.123 Ext=[130.0, 131.0] Z'=130.636 X=6443137.939 Y=4365919.860 Z=170.821 Ext=[170.0, 171.0] Z'=170.012 X=6443131.284 Y=4970042.356 Z=159.172 Ext=[163.0, 164.0]	<u> </u>

Рис. 96. Координаты точек при контроле горизонталей по пикетам

В окне отображается список, где:

- N порядковый номер пикета;
- Х, Ү, Z координаты пикета;
- Ext расстояние между ближайшими горизонталями в плане;
- Z'— разница высот горизонталей и пикета, которая превышает максимальное отклонение.

Для того чтобы экспортировать список в файл с расширением csv, нажмите на кнопку 📴.

9. Щелчком мыши выберите пикет в списке. В результате маркер позиционируется в выбранный пикет и отображается в 2D-окне.

Рис. 97. Контроль горизонталей по пикетам

10. Используйте инструменты редактирования полилиний для редактирования горизонталей (описание см. в руководстве пользователя «Векторизация»).

6.8.3. Контроль высот вершин горизонталей

В системе предусмотрена возможность проверки высот вершин построенных горизонталей.

Для того чтобы проверить высоты вершин горизонталей, выполните следующие действия:

- 1. Загрузите либо создайте слой с горизонталями.
- Выберите ЦМР > Горизонтали > Контроль вершин горизонталей. Происходит проверка высот вершин горизонталей. В случае отсутствия ошибок высот выдается соответствующее сообщение.

😔 РНОТО	MOD	6.1.1923	
0	Φ	24.06.2016 15:47:24: Ничего не найдено	
0			
1			
0			
		ОК	

Рис. 98. Информационное сообщение об отсутствии ошибок высот вершин горизонталей

В случае обнаружения ошибок по высоте открывается окно Исправление высот вершин горизонталей.

😔 Исправление высот вершин горизонталей	

1 : Число вершин: 1, Высота вершин: 540.000, Правиль	ное значение высоты: 545.000

Рис. 99. Окно исправление высот вершин горизонталей

- 3. [опционально] Для того чтобы исправить одну выбранную горизонталь, нажмите на кнопку **Исправление выбранной горизонтали** (**※**).
- 4. [опционально] Для того чтобы исправить одну выбранную горизонталь, нажмите на кнопку **Исправление всех горизонталей** (

7. Матрица высот

7.1. Меню «Матрица высот»

Меню **Матрица высот** содержит стандартные пункты меню для загрузки и сохранения слоев матриц высот, а также пункты меню для выполнения различных операций по построению, контролю точности, фильтрации и редактированию матрицы высот.

Меню Матрица высот находится в меню ЦМР.

Пункты меню	Назначение
Открыть матрицу высот (Ctrl+O, D)	позволяет загрузить матрицу высот из файла *.x-dem
Открыть из файла	позволяет загрузить матрицу высот из внешних данных без конвертации во внутренний формат
Предыдущие	позволяет осуществить быстрый доступ к послед- ним загруженным файлам матриц высот
Сохранить копию	позволяет сохранить открытую матрицу высот в новый файл
Сохранить выделенное	позволяет сохранить область матрицы высот
Сохранить как геопривязанный растр	позволяет сохранить матрицу высот в виде ра- стрового файла с сохранением геодезической привязки
Закрыть	позволяет закрыть слой с матрицей высот
Закрыть все открытые слои	позволяет закрыть все слои с матрицами высот
Видимость слоев	содержит пункты меню, позволяющие осуще- ствлять групповое управление видимостью слоев с матрицами высот в <i>Диспетчере слоев</i>
Построить матрицу высот	содержит пункты меню для построения матрицы высот по различным исходным данным
Перестроить по TIN	позволяет перестроить матрицу высот при вне- сении изменений в базовый слой TIN
Восстановить	служит для восстановления целостности матри- цы высот, которая могла быть нарушена в резуль- тате применения различных операций или фильтрации матрицы высот
Фильтр строений и растительности	служит для фильтрации строений и растительно- сти в матрице высот
Фильтрация по углу наклона	служит для фильтрации по углу наклона матрицы высот
Медианный фильтр	позволяет использовать медианную фильтрацию ячеек матрицы высот
Сглаживающий фильтр	позволяет использовать сглаживающей фильтра- ции значений матрицы высот
Фильтр по характеристикам изображения	служит для фильтрации матрицы высот по харак- теристикам изображения
Заполнить пустые ячейки	содержит пункты меню для восстановления пустых ячеек матриц высот различными способами
Преобразовать в пустые ячейки	позволяет преобразовать ячейки матрицы с за- данной высотой в пустые
Установить высоту в выделенных полиго- нах	позволяет установить одинаковую высоту ячеек матрицы высот внутри/снаружи выделенных по- лигонов

Таблица 5. Краткое описание меню «Матрица высот»

Пункты меню	Назначение
Интерполировать высоту в выделенных по- лигонах	позволяет интерполировать значение ячеек матрицы высот внутри/снаружи выделенных по- лигонов
Обрезать по выделенным полигонам	служит для редактирования области покрытия матрицы высот
Обрезать поля	служит для удаления граничных областей матри- цы высот, состоящих из пустых ячеек
Транспонировать	служит для преобразования матрицы высот из левой системы координат в правую и наоборот
Преобразовать в другую систему координат	позволяет изменить систему координат матрицы высот
Перестраивание матрицы высот с учетом последнего уравнивания	позволяет перестроить матрицу высот с учетом результатов последнего уравнивания (если по- сле построения матрицы высот было выполнено повторное уравнивание в копии проекта)
Сдвинуть	служит для параллельного переноса матрицы высот по осям
Делить матрицу высот на листы	служит для нарезки матрицы высот на листы для сохранения матрицы высот частями в отдельных файлах
Сшить матрицы высот	позволяет объединить матрицы высот, имеющие перекрытие
Контроль точности	служит для контроля точности построения мат- рицы высот по различным данным
Вычисление объемов	служит для вычисления объема, (т. е. насыпи или выемки) заключенного между поверхностью матрицы высот и произвольной плоскостью Z, или, в более сложном случае, объема, пред- ставляющего собой перекрытие между двумя (условно, «верхней» и «нижней») поверхностями DEM.
Преобразование в пикеты	позволяет преобразовать ячейки матрицы высот в пикеты с заданным прореживанием
Вставить пикеты в матрицу высот	позволяет добавить пикеты в матрицу высот для уточнения значений ячеек матрицы высот
Экспорт	содержит пункты меню для экспорта матрицы высот в различные форматы
Импорт	содержит пункты для импорта матрицы высот из файлов с расширениями grd, asc, tif, dem, mtw, dt1, dt2, img, pix, hgt
Пакетный импорт	служит для одновременного импорта нескольких матриц высот
Пакетный импорт из папки	служит для одновременного импорта всех матриц высот из указанной папки

7.2. Общие сведения

Матрицей высот (DEM — Digital Elevation Model) — называют цифровое картографическое представление земной поверхности в виде регулярной сетки значений высот.

Исходными данными для создания матрицы высот являются следующие данные, по отдельности или в совокупности:

- TIN (Triangulated Irregular Network);
- регулярные или нерегулярные пикеты (точечные объекты);
- векторные объекты (раздел *Создание векторных объектов* см. в руководстве пользователя «Векторизация»).

Матрица высот отображается в 2D-окнах, а также может быть открыта для просмотра в 3D-окне или в 2D-окне стереопары в стереорежиме.

При отображении матрицы высот в стереорежиме возможны ошибки визуализации.

Для просмотра информации о матрице высот в контекстном меню слоя в *Диспет-чере задач* выберите **Информация**. Выдается информационное окно со следующей информацией о слое:

- имя слоя;
- полный путь к файлу слоя;
- наличие данных и изменений в слое;
- возможность изменения слоя;
- координаты граничных точек матрицы высот, в том числе по высоте;
- размер пиксела на местности;
- размеры матрицы (в количестве ячеек);
- система координат слоя.

😞 РНОТОМО	D 5.25.1598
▲ 0 ④ ▲ 0 ④ 1 ■ 0	 04.04.2014 11:23:33: Информация о слое: test_DIF (Матрица высот) Ресурс: "/Тесhsuppot/Waldkirch_Group/Waldkirch/Data/dem/test_DIF.x-dem". В слое есть данные Слой изменен: нет Слой только для чтения: нет Границы: - Xmin: 735986.599 - Ymin: 257353.417 - Zmin: 0.000 - Xmax: 738276.599 - Ymax: 260683.417 - Zmax: 0.100 Размер матрицы: - X: 230 ячеек - Y: 234 ячеек Байт/сэмпл: 4 Система координат слоя: геопривязанная, Декартова правая.
	Дополнительно

Рис. 100. Информация о слое матрицы высот

7.3. Создание матрицы высот

7.3.1. Построение матрицы высот по TIN

В системе предусмотрена возможность построения матрицы высот по нерегулярной пространственной сети треугольников (TIN). Для этого выполните следующие действия:

- 1. Создайте или загрузите исходный TIN.
- Выберите ЦМР > Матрицы высот > Построить матрицу высот > По TIN... (Ctrl+N, D). Открывается окно параметров Построение матрицы высот по TIN.

Параметр	ы построения матрицы высот по TIN	×
Границы		
	Север 260722.664122 🚔 м	
Запад 735	9901.581745 🛕 м Восток 738373.702484 🛓 м	
	Юг 257296.054448 💌 м	
Высота	м м	
Ширина 🕻	2472.121 м	
Размер яче	йки	
Размер яч	ейки матрицы высот 10.0 🚔 м Из проекта	
Количест	во ячеек:	
Высота	342	
Ширина	247	
Примерн	ый размер матрицы высот 438.87 КБ	
	Рассчитать параметры по существующей матрице высот	
	ОК От	мена

Рис. 101. Параметры построения матрицы высот по TIN

3. Задайте границы матрицы высот в поля Север, Запад, Восток, Юг. В полях Высота и Ширина отображаются рассчитанные размеры границы матрицы высот в метрах.

Значениями по умолчанию являются координаты углов прямоугольника, описывающего область построения TIN.

4. В разделе Размер ячейки задайте Размер ячейки матрицы высот в метрах для определения размера элемента выходной матрицы высот. Количество ячеек, рассчитанное с учетом заданного размера ячейки, отображается в полях Высота и Ширина, также отображается Примерный размер матрицы высот в мегабайтах.

Размер ячейки матрицы высот должен быть соизмерим со средним расстоянием между пикетами базового слоя TIN. При использовании меньшего размера ячейки увеличивается время построения матрицы и размер выходного файла, но точность обработки при этом не повышается.

Нажмите на кнопку Из проекта для того чтобы задать размер ячейки матрицы высот, равный среднему значению размера пикселя на местности.

 [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля. 6. Нажмите ОК. Задайте имя файла матрицы высот, определите папку в ресурсах активного профиля и нажмите Сохранить (см. также раздел 7.9 и Загрузка матрицы высот). Запускается процесс построения матрицы высот. В результате создается новый слой в Диспетчере слоев и выдается сообщение об успешном/неуспешном завершении процесса.

Рис. 102. Матрица высот, построенная по TIN

При перемещении маркера по матрице высот в панели статуса в 2D-окне отображаются XYZ-координаты точек матрицы.

В системе предусмотрена возможность перестроения матрицы высот при внесении изменений в базовый TIN. Для этого служит пункт меню **ЦМР · Матрицы высот · Перестроить по TIN**.

7.3.2. Построение матрицы высот по регулярным пикетам

В системе предусмотрена возможность построения матрицы высот по набору пикетов, созданных в узлах регулярной сетки или импортированных из внешних файлов. Для этого выполните следующие действия:

- 1. Создайте или загрузите слой с пикетами.
- 2. Выберите ЦМР > Матрицы высот > Построить матрицу высот > По регулярным пикетам.... Открывается окно Параметры построения матрицы высот по регулярным пикетам.

🚔 Параметры построе	ния матр	ицы высот по регуляр	ным пик	етам	
Границы					
	Север	3427981.18460709	*∕↓		
Запад 673552.587817176	*	Размер ячейки 10.0	*	692322.587817176	Восток
	Юr	3417661.18460709	\$∕↓		
	Рассчитат	ъ параметры по существу	ющей ма	трице высот	
Высота: 10320.000 (1033	узлов)				
Ширина: 18770.000 (1878	узлов)				
🗌 Исключать пикеты с в	высотой:	0.0 🚺 n	n		
			[ОК	Отмена

Рис. 103. Построение матрицы высот по регулярным пикетам

3. Задайте границы матрицы высот в поля **Север**, **Запад**, **Восток**, **Юг**. В полях **Высота** и **Ширина** отображаются рассчитанные размеры границы матрицы в метрах, а также количество узлов матрицы высот.

Значениями по умолчанию являются координаты граничных пикетов исходного слоя.

- 4. Задайте **Размер ячейки** в метрах для изменения размера элемента выходной матрицы.
 - Размер ячейки матрицы высот должен быть соизмерим со средним расстоянием между пикетами. При использовании меньшего размера ячейки увеличивается время построения матрицы и размер выходного файла, но точность обработки при этом не повышается.
- [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.
- 6. [опционально] Чтобы исключить из построения пикеты с заданной высотой, установите флажок **Исключать пикеты с высотой** и введите параметр в метрах.
- 7. Нажмите ОК. Задайте имя файла матрицы высот, определите папку в ресурсах активного профиля и нажмите Сохранить (см. также раздел 7.9 и Загрузка матрицы высот). Запускается процесс построения матрицы высот. В результате создается новый слой в Диспетчере слоев и выдается сообщение об успешном/неуспешном завершении процесса.

7.3.3. Построение матрицы высот по пикетам

В системе предусмотрена возможность построения матрицы высот по пикетам (точечные векторные объекты, расположенные на поверхности рельефа). Для этого выполните следующие действия:

- 1. Создайте или загрузите слой с пикетами.
- 2. Выберите **ЦМР > Матрица высот > Построить матрицу высот > По пикетам...**. Открывается окно **Параметры построения матрицы высот по пикетам**.

🜲 Параметры постро	ения матр	ицы высот по пикета	1		
Границы					
	Север	3427981.18464847	*↓		
Запад		Размер ячейки			Восток
673552.587808687	\$∕↓	10.0	*	692322.58780868	7
	Юг	3417661.18464847	*		
	Рассчитат	ъ параметры по существ	/ющей ма	грице высот	
Высота: 10320.000 (103	33 узлов)				
Ширина: 18770.000 (187	78 узлов)				
Размер области поиска:	1.0	• M			
азнор области понска.	1.0				
Размер кэша:	32	Строк			
				ОК	Отмена

Рис. 104. Параметры построения матрицы высот по пикетам

3. Задайте границы матрицы высот в поля Север, Запад, Восток, Юг. В полях Высота и Ширина отображаются рассчитанные размеры границы матрицы в метрах, а также количество узлов матрицы высот.

Значениями по умолчанию являются координаты граничных пикетов исходного слоя.

- 4. Задайте **Размер ячейки** в метрах для изменения размера элемента выходной матрицы.
 - Размер ячейки матрицы высот должен быть соизмерим со средним расстоянием между пикетами. При использовании меньшего размера ячейки увеличивается время построения матрицы и размер выходного файла, но точность обработки при этом не повышается.
- [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.

 Задайте Размер области поиска в метрах для изменения размера «скользящего окна» (в метрах на местности).

Метод «скользящего окна» — перемещение по набору пикетов от узла к узлу матрицы высот и учет высот и веса попадающих в него пикетов. Значение ячейки матрицы (высота), который находится в центре «скользящего окна», определяется как сумма высот пикетов в «скользящем окне» в зависимости от их веса.

Размер ячейки выходной матрицы не должен превышать размера «скользящего окна», заданный в поле Размер области поиска.

7. Задайте **Размер кэша** в строках для поиска пикетов в заданной области поиска по размеру ячейки.

Размер кэша используется для определения количества строк области поиска.

 Нажмите ОК. Задайте имя файла матрицы высот, определите папку в ресурсах активного профиля и нажмите Сохранить (см. также раздел 7.9 и Загрузка матрицы высот). Запускается процесс построения матрицы высот. В результате создается новый слой в Диспетчере слоев и выдается сообщение об успешном/неуспешном завершении процесса.

7.3.4. Построение матрицы высот по CSV-файлу

В системе предусмотрена возможность построения матрицы высот по данным, полученным из CSV-файла.

Использование координат точек из CSV-файла возможно только в случае, если координаты точек записаны по шаблону Name X Y Z.

Для построения матрицы высот по CSV-файлу выполните следующие действия:

 Выберите ЦМР > Матрицы высот > Построить матрицу высот > По данным CSV-файла.... Открывается окно Параметры построения матрицы высот по данным CSV-файла.

🜻 Параметры пост	роения матр	ицы высот по даннь	ıм CS¥-фай	іла	
Границы	Север	3433999.7967872	*		
Запад 670327.513010025	X	Размер ячейки 10.0	%	696037.5130100	Восток 25 🌠
	Юг	3411969.7967872	*		
	Рассчитать	» параметры по сущести	зующей мат	рице высот	
Высота: 22030.000 (; Ширина: 25710.000 (;	2204 узлов) 2572 узлов)				
Прочитать гран	ицы из файла				
		CSV файл с точ	ками		
1			ĸ		
Исключать пикета Менять местами Х	ы с высотой: , Y	0.0	m		
				ОК	Отмена

Рис. 105. Построение матрицы высот по данным CSV-файла

2. Задайте границы матрицы высот в поля Север, Запад, Восток, Юг. В полях Высота и Ширина отображаются рассчитанные размеры границы матрицы в метрах, а также количество узлов матрицы высот.

3начениями по умолчанию являются координаты граничных пикетов в исходном CSVфайле.

- 3. [опционально] Для определения границ выходной матрицы высот из данных CSV-файла нажмите на кнопку **Прочитать границы из файла**.
- 4. Задайте **Размер ячейки** в метрах для изменения размера элемента выходной матрицы.
 - Размер ячейки матрицы высот должен быть соизмерим со средним расстоянием между пикетами. При использовании меньшего размера ячейки увеличивается время построения матрицы и размер выходного файла, но точность обработки при этом не повышается.
- [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.
- 6. Нажмите на кнопку ____ и выберите CSV-файл для построения матрицы высот.
- 7. [опционально] Чтобы исключить из построения пикеты с заданной высотой, установите флажок **Исключать пикеты с высотой** и задайте значение в метрах.

 [опционально] Для пересчета координат объектов из левой системы координат в правую установите флажок Менять местами Х, Ү. Система координат при этом не изменяется.

Если не установлен флажок **Менять местами Х и Ү**, то векторные объекты импортируются в правой системе координат. Иначе — в левой системе координат.

9. Нажмите ОК. Задайте имя файла матрицы высот, определите папку в ресурсах активного профиля и нажмите Сохранить (см. также раздел 7.9 и Загрузка матрицы высот). Запускается процесс построения матрицы высот. В результате создается новый слой в Диспетчере слоев и выдается сообщение об успешном/неуспешном завершении процесса.

7.3.5. Построение матрицы высот по гладкой модели

В системе предусмотрена возможность построения матрицы высот по гладкой модели, созданной по объектам выбранных векторных слоев. При использовании гладкой модели строится сглаженная матрица высот с заданной точностью.

Чтобы построить матрицу высот по гладкой модели, выполните следующие действия:

 Выберите ЦМР > Матрицы высот > Построить матрицу высот > По гладкой модели.... Открывается окно Параметры построения матрицы высот по гладкой модели.

😞 Параметры построения матрицы высот по г/	задкой модели
Исходные слои	Параметры матрицы высот
≣ ₿ ₩	Границы
📝 auto_pts_5m_filtered (Векторы)	Север 260722.664122 💌 м
	Запад 735901.581745 🙀 м Восток 738373.702484 🖡 м
Граница рабочей области	Юг 257296.054448 🗮 м
Прямоугольная	Высота 3426.610 м
 Выпуклая Использовать полигоны со слоя 	Ширина 2472.121 м
auto_pts_5m_filtered (Векторы) —	Размер ячейки
Только выделенные	Размер ячейки матрицы высот 1.0 👘 м Из проекта
Точность ЦМР 1.0 🔦 м	Количество ячеек:
	Высота 3426
	Ширина 2472
	Примерный размер матрицы высот 42.97 МБ
	Рассчитать параметры по существующей матрице высот
	Обновить
	ОК Отмена

Рис. 106. Параметры построения матрицы высот по гладкой модели

2. В разделе **Исходные слои** установите флажки у базовых слоев с точками для построения матрицы высот.

Нажмите на кнопку 📰 для выделения всех слоев, на кнопку 📑, чтобы снять выделение со всех слоев, либо на кнопку 👫, чтобы инвертировать выбор слоев.

- В разделе Граница рабочей области установите тип границы рабочей области:
 - Прямоугольная для построения прямоугольной границы;
 - Выпуклая для построения границы по крайним пикетам выбранного слоя;
 - Использовать полигоны со слоя для построения границы из слоя, полигоны которого используются в качестве границ для построения матрицы высот. Установите флажок Только выделенные, чтобы использовать в качестве границ выделенные полигоны, иначе используются все полигоны слоя.
- 4. Задайте значение в поле **Точность ЦМР**, чтобы изменить допустимое отклонение значений высот ячеек матрицы высот от исходного векторного слоя в метрах.

Параметр Точность ЦМР определяется, исходя из значений ошибок при создании векторных объектов с помощью коррелятора в стереорежиме.

- 5. Задайте границы матрицы высот в поля **Север**, **Запад**, **Восток**, **Юг**. В полях **Высота** и **Ширина** отображаются рассчитанные размеры границы матрицы в метрах.
- 6. В разделе Размер ячейки задайте Размер ячейки матрицы высот в метрах для изменения размера элемента выходной матрицы. В полях Высота и Ширина отображается число узлов, рассчитанное с заданным размером ячейки матрицы высот. Также отображается Примерный размер матрицы высот в мегабайтах.
 - Размер ячейки матрицы высот должен быть соизмерим со средним расстоянием между пикетами. При использовании меньшего размера ячейки увеличивается время построения матрицы и размер выходного файла, но точность обработки при этом не повышается.

 [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.

- 8. [опционально] Чтобы вернуть параметры по умолчанию, нажмите на кнопку Обновить.
- Нажмите ОК. Задайте имя файла матрицы высот, определите папку в ресурсах активного профиля и нажмите Сохранить (см. также раздел 7.9 и Загрузка матрицы высот). Запускается процесс построения матрицы высот. В результате создается новый слой в Диспетчере слоев.

7.3.6. Построение плотной матрицы высот

В системе предусмотрена возможность построения плотной матрицы высот, размер ячейки которой соответствует одному пикселу изображения.

Построение ЦМР по плотной модели выполняется *только* для уравненных блоков снимков (см. руководство пользователя «Уравнивание сети»). В противном случае построение не выполняется или выполняется не корректно.

При работе в *PHOTOMOD Lite* из-за особенностей построения плотной матрицы высот, размер выходной матрицы ограничен 400х400 ячеек.

При создании плотной матрицы высот предусмотрен следующий порядок работы:

- 1. Построение матрицы высот на заданную область.
- 2. Основная обработка: применение фильтра строений и растительности к построенной матрице высот и/или восстановление пустых ячеек.
- 3. [опционально] Дополнительная обработка медианная и/или сглаживающая фильтрация.

Если после выполнения процесса не удаляются промежуточные данные, в системе предусмотрена возможность запуска отдельных этапов (фильтрации или сглаживания) без повторного расчета исходной матрицы высот.

Для построения плотной матрицы высот выполните следующие действия:

1. Задайте сетку для определения области построения матрицы высот.

Поскольку расчет координат осуществляется в каждом пикселе выбранной области, узлы сетки не учитываются. Сетка используется только в качестве границы области построения матрицы высот.

2. Выберите ЦМР > Матрицы высот > Построить матрицу высот > Плотная ЦМР.... Открывается окно Параметры построения плотной ЦМР.

Если сетка не была построена предварительно, открывается окно Свойства сетки и создается сетка на весь блок снимков.

😔 Параметры построения плотной ЦМР	
Область поиска	Параметры выходной матрицы высот
Все изображения Выделенные изображения Активная стереопара	Границы
🕅 Использовать межмаршрутные стереопары	Север 260696.0 м
🔲 Учитывать угол засечки	3апад 735146.0 л. м Восток 739100.0 л. м
☑ Использовать разметку auto_pts_5m_filtered (Векторы)	• Юг 257253.0 💮 м
Рабочая папка	Высота 3443.000 м
/Techsupport/Waldkirch_Group/Waldkirch/Data/dem/delme	Ширина 3954.000 м
Перед выполнением операции все ресурсы из рабочей папки будут удалены	Province and Sector
Расчет исходной ЦМР	Размер ячеики
Проверка корреляции	Размер ячейки матрицы высот 1.0 🚔 м Из проекта
✓ Проверка автокорреляции	Количество ячеек:
Область проверки 4 🔺 х 1 🛋 Свойства	Высота 3443
Порог корреляции 0.2 🔹	
Радиус автокорреляции 20	Ширина 3954
	Примерный размер матрицы высот 69.07 МБ
Основная обработка	Рассинтать рараметры по существующей матрине высот
Фильтр строений и растительности Параметры	
Восстановление пустых ячеек Параметры	
Дополнительная обработка	
🗐 Медианный фильтр Параметры	
🔲 Сглаживающий фильтр Параметры	
🕅 Удалить промежуточные данные	
	ОК Распределенная обработка Отмена

Рис. 107. Параметры построения плотной ЦМР

- 3. В разделе Область поиска установите одну из областей поиска:
 - Все изображения для выбора всех изображений блока;
 - Выделенные изображения для выбора выделенных в 2D-окне блока изображений;
 - Активная стереопара для выбора изображений стереопары, открытой в активном 2D-окне.

Все выбранные стереопары должны входить в уравненную часть блока (см. руководство пользователя «Уравнивание сети»). Иначе построение не выполняется или выполняется не корректно. В первом случае выдается сообщение об ошибке, во втором — привязка рассчитанных пикетов к системе координат проекта не представляется возможной.

- 4. [опционально] Определите дополнительные параметры области поиска:
 - установите флажок Использовать межмаршрутные стереопары для расчета ЦМР на межмаршрутных стереопарах при обработке проектов БПЛА, а также в случаях, когда использование межмаршрутных стереопар оправдано геометрическими и радиометрическими параметрами данных.

- По умолчанию расчет пикетов осуществляется для маршрутных стереопар (рекомендуется).
- установите флажок Учитывать угол засечки для отбраковки грубых ошибок по Z на снимках с малым или нулевым углом засечки и определите значение минимального угла с помощью ползунка;

- Для того чтобы оценить углы засечки на снимках проекта, выполните следующее:
 - 1. Создайте карту качества стерео для блока изображений (см. раздел «Оценка качества стерео» руководства пользователя «Векторизация»).
 - Измените расцветку карты качества стерео в соответствии со значениями атрибута st_ang (Векторы > Атрибуты > Расцветка по значению атрибута, см. разделы «Оценка качества стерео» и «Изменение расцветки векторов» руководства пользователя «Векторизация»).
 - 3. Для того чтобы получить информацию о значении атрибута st_ang для выбранного узла карты качества стерео, выделите соответствующий узел карты качества стерео и выберите **Окна > Атрибуты объектов**.
- установите флажок Использовать разметку и выберите векторный слой с граничными полигонами.
- 5. В разделе **Рабочая папка** нажмите на кнопку ____ и выберите **пустую** папку в ресурсах активного профиля для сохранения выходной матрицы высот.

Перед выполнением операции из выбранной папки удаляются все данные.

- [опционально] В разделе Расчет исходной ЦМР определите параметры работы коррелятора:
 - флажки Проверка корреляции и Проверка автокорреляции установлены в системе по умолчанию для проверки значения корреляции на заданные в параметрах допуски и проверки автокорреляции соответственно;

Отбраковка осуществляется с помощью проверки порога корреляции либо по радиусу автокорреляции.

Не рекомендуется изменять параметры отбраковки пикетов.

- в поля Область проверки задайте размер матрицы поиска;
- задайте Порог корреляции минимально допустимое значение коэффициента корреляции для сопоставленных пикселов изображений;
если на рабочей станции установлено несколько видеокарт, выберите из списка центральный процессор (CPU) или NVIDIA CUDA процессор (GPU) для расчетов. Нажмите на кнопку Свойства, для просмотра свойств видеокарты, если они предусмотрены устройством;

Использование NVIDIA CUDA существенно сокращает время обработки. Подробную информацию см. на сайте http://www.nvidia.ru/object/cuda_gpus_ru.html.

 нажмите кнопку Дополнительно для определения дополнительных параметров. Открывается окно Параметры коррелятора.

🔅 Параметры корре	лятора		_ 🗆 X		
Сглаживание изобра	жений –		Į		
Поиск по Х	12	12	×		
Поиск по У	3	3	*		
Размер полумаски	10	1			
Размер микротайла	100	1			
Размер макротайла	512	•			
Грубый порог	0.2	1			
Порог дисперсии	5 2	1			
Коэффициент прореживания растра 🛛 1					
Субпиксельная корреляция					
🔲 Выводить статистику					
	ок	От	мена		

Рис. 108. Окно дополнительных параметров коррелятора

Параметр	Описание
Сглаживание изображений	ползунок для определения степени сглажи- вания изображений
Поиск по Х	размер области поиска по X относительно начального приближения, вычисленного по данным ориентирования
Поиск по Ү	размер области поиска по Y относительно начального приближения, вычисленного по данным ориентирования
Размер полумаски	значение половины линейного размера маски корреляции в пикселах по осям X и Y
Размер микротайла	размер области в макротайле для сопостав- ления пикселов
Размер макротайла	размер области изображения
Грубый порог	значение коэффициента корреляции при со- поставлении микротайлов
Порог дисперсии	значение контраста при сопоставлении пик- селов изображений

Параметр	Описание
Коэффициент прореживания растра	используемый уровень пирамиды изображе- ния для поиска точек
Субпиксельная корреляция	флажок для использования субпиксельной корреляции при поиске соответственных то-чек
Выводить статистику	флажок для отображения информации о по- строении плотной ЦМР в окне прогресса

- 7. В разделе Основная обработка по умолчанию установлен флажок Фильтр строений и растительности для исключения из обработки пикетов, поставленных на крышах строений или кронах деревьев. Снимите флажок, чтобы не использовать фильтр, либо нажмите на кнопку Параметры для настройки параметров фильтрации, которые описаны в разделе 7.4.1.
- [опционально] В разделе Основная обработка по умолчанию установлен флажок Восстановление пустых ячеек. Снимите флажок, чтобы не использовать фильтр, либо нажмите на кнопку Параметры для настройки параметров. Открывается окно Параметры заполнения пустот.
- 9. [опционально] В разделе **Дополнительная обработка** задайте следующие параметры фильтрации:
 - установите флажок Медианный фильтр для использования медианной фильтрации при построении матрицы и задайте Параметры использования фильтра;
 - установите флажок Сглаживающий фильтр для использования его при построении матрицы и задайте Параметры использования фильтра.
- 10. [опционально] Для удаления данных обработки после завершения вычислений установите флажок **Удалить промежуточные данные**.

Не рекомендуется удалять промежуточные данные до окончательного построения матрицы высот. При удалении промежуточных данных невозможно запустить отдельные этапы (фильтрацию или сглаживание) без повторного расчета матрицы высот.

- 11. В разделе **Параметры выходной матрицы высот** задайте границы матрицы высот в поля **Север**, **Запад**, **Восток**, **Юг**. В полях **Высота** и **Ширина** отображаются рассчитанные размеры границы матрицы в метрах.
- 12. Задайте Размер ячейки матрицы высот в метрах для изменения размера элемента выходной матрицы. В полях Высота и Ширина раздела Размер ячейки отображается число узлов, рассчитанное с заданным размером ячейки матрицы высот. Также отображается Примерный размер матрицы высот в мегабайтах.

Э Значение параметра Размер ячейки матрицы высот не должно быть меньше среднего размера пиксела изображения (GSD). При использовании меньшего размера ячейки увеличивается время построения матрицы и размер выходного файла, но точность обработки при этом не повышается.

Нажмите на кнопку Из проекта для того чтобы задать размер ячейки матрицы высот, равный среднему значению размера пикселя на местности.

- 13. [опционально] В системе предусмотрена возможность расчета параметров выходной матрицы высот из параметров существующей. Для этого нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот для расчета в ресурсах активного профиля.
- 14. Нажмите ОК для запуска процесса построения плотной матрицы высот в обычном режиме.

Чтобы построить матрицу высот с использованием распределенной обработки, выполните следующие действия:

При распределенном построении ЦМР площадь выходной матрицы делится на прямоугольные листы с заданным перекрытием, которые вычисляются в отдельных задачах. При выполнении последней задачи производится сшивка всех полученных листов матрицы высот.

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка. Открывается окно Распределенное построение ЦМР.

Перед настройкой параметров распределенной обработки необходимо задать параметры использования фильтра строений и растительности. Окно настроек открывается автоматически, если параметры не были заданы.

no X: 100	0.0 % •	1	по Y: 1	000.0	*₄ м		
с перекрытием	50.0	м					
Максимальное	количество задач	4: 6]			
(реальное кол	ичество задач мо;	жет быть мен	ньше в завис	имости от ко	онфигурации	1 блока и сетки)
Предупрежден обработки для одновременно должно быть,	ние: если для расч каждого участву выполняемых зад доступно как мині о устройство#0. Е	четов выбран ующего комп дач, равное 1 имум одно уст Более по проб	но устройств њютера дол: 1. Кроме того тройство GPI	ю GPU, в сис жно быть ус 5, на каждог U, поддержн	теме распре тановлено с и участвуюц ивающее CU	деленной граничение чи цем компьютер DA. Для расчет	сла е гов

Рис. 109. Параметры распределенного построения плотной модели рельефа

 Задайте параметр Разбиение на задачи по прямоугольным листам с размерами по Х и по Y в метрах, исходя из количества используемых компьютеров.

Рекомендуется задавать одну задачу на один компьютер.

Максимальное количество созданных задач вычисляется автоматически по заданным размерам листа.

При использовании устройства GPU для построения ЦМР, необходимо для каждого компьютера, участвующего в обработке установить количество одновременно выполняемых задач не больше одной.

Наличие как минимум одного графического устройства, поддерживающего CUDA, необходимо на **каждом** используемом в обработке компьютере.

4) [опционально] Задайте значение с перекрытием меньше значения по умолчанию для ускорения обработки.

Настоятельно не рекомендуется уменьшать значение при обработке снимков на местность с большими перепадами высот.

Шаг сетки должен быть значительно меньше размера перекрытия листов, иначе возникает вероятность получения в углах листов и при сшивке области без матрицы высот.

5) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

В зависимости от размера области построения процесс может занять длительное время.

7.3.7. Построение плотной матрицы высот методом SGM

В системе предусмотрена возможность построения плотной матрицы высот (ЦМР), размер ячейки которой соответствует одному пикселу изображения, методом SGM (Semi-Global Matching).

Данный метод предназначен для работы с широким набором данных ДЗЗ, включая аэроснимки центральной проекции (в том числе наклонная съемка), данные БПЛА, космические сканерные снимки, данные камер VisionMap и ADS.

Построение ЦМР по плотной модели выполняется *только* для уравненных блоков снимков (см. руководство пользователя «Уравнивание сети»). В противном случае построение не выполняется или выполняется не корректно.

Перед построением плотной матрицы высот методом SGM в проектах типа «Космическая сканерная съемка» (см. раздел «Космическая сканерная съемка» руководства пользователя «Создание проекта») рекомендуется выполнить построение областей без фона (см. раздел «Построение областей без фона» руководства пользователя «Создание проекта»).

При создании плотной матрицы высот методом SGM предусмотрен следующий порядок работы:

- 1. Построение матрицы высот на заданную область.
- 2. Основная обработка: применение фильтра строений и растительности к построенной матрице высот и/или восстановление пустых ячеек.
- 3. [опционально] Дополнительная обработка медианная и/или сглаживающая фильтрация.

Если после выполнения процесса не удаляются промежуточные данные, в системе предусмотрена возможность запуска отдельных этапов (фильтрации или сглаживания) без повторного расчета исходной матрицы высот.

- 4. [опционально] Построение облака точек LAS в границах матрицы высот.
- 5. [опционально] Построение true ortho в границах матрицы высот.

Для построения плотной матрицы высот методом SGM выполните следующие действия:

1. Задайте сетку для определения области построения матрицы высот.

Поскольку расчет координат осуществляется в каждом пикселе выбранной области, узлы сетки не учитываются. Сетка используется только в качестве границы области построения матрицы высот.

 Выберите ЦМР > Матрицы высот > Построить матрицу высот > Плотная ЦМП (метод SGM).... Открывается окно Параметры построения плотной ЦМР методом SGM.

Если сетка не была построена предварительно, открывается окно Свойства сетки и создается сетка на весь блок снимков.

Область поиска			Параметры выходной матрицы высот
Э Все изображения Выделенные изображения Активная стереопара	 Использовать межмарі Учитывать угол засечкі 	шрутные стереопары • Мин 30 × Макс 150 с	Границы Север 260699.0 (m) т
Начальное приближение			Запад 735140.0 📩 т Восток 739116.0 🚔 т
 Диапазон высот стереопары Диапазон высот проекта 			For 257262.0 (m) m
Эаданная высота	0.0 n		Высота 3437.000 m
асширение диапазона	0.0 🗘 m		Ширина 3976.000 m
абочая папка			Размер ячейки
/Techsupport/Waldkirch_Group	o/Waldkirch_docs/Data/dem/l	DSM1	Размер ячейки матрицы высот 1.0 🚔 m Из проекта
Тараметры SGM			
Летод расчета		🖲 CT 💿 MI	количество ячеек:
Лаксимальный поперечный па	араллакс (пикс)	0	Высота 3437
		Дополнительно	Ширина 3976
Дополнительная обработка			Примерный размер матрицы высот 69.33 МБ
🖊 Медианный фильтр		Параметры	
Сглаживающий фильтр		Параметры	Рассчитать параметры по существующей матрице высот
Линимальное количество отсч	етов в перекрытии	2	
Облако точек (LAS)			
Создавать облако точек (LAS)	Параметры	
True Ortho			
Создавать True Ortho		Параметры	
BD-TIN			
Coздавать 3D-TIN		Параметры	
Удалить промежуточные дан	ные	(оценить размер)	

Рис. 110. Параметры построения плотной ЦМР методом SGM

- 3. В разделе Область поиска установите одну из областей поиска:
 - Все изображения для выбора всех изображений блока;
 - Выделенные изображения для выбора выделенных в 2D-окне блока изображений;
 - Активная стереопара для выбора изображений стереопары, открытой в активном 2D-окне.

Все выбранные стереопары должны входить в уравненную часть блока (см. руководство пользователя «Уравнивание сети»). Иначе построение не выполняется или выполняется не корректно. В первом случае выдается сообщение об ошибке, во втором — привязка рассчитанных пикетов к системе координат проекта не представляется возможной.

- 4. [опционально] Определите дополнительные параметры области поиска:
 - установите флажок Использовать межмаршрутные стереопары для расчета ЦМР на межмаршрутных стереопарах при обработке проектов БПЛА, а так же в случаях, когда использование межмаршрутных стереопар оправдано геометрическими и радиометрическими параметрами данных.

По умолчанию расчет ЦМР осуществляется для внутримаршрутных стереопар (рекомендуется). Для проектов **Vision Map** при расчете ЦМР рекомендуется использование *только* внутримаршрутных стереопар.

- установите флажок Учитывать угол засечки для отбраковки грубых ошибок по Z на снимках с малым или нулевым углом засечки и определите значения минимального и максимального углов;
 - Для того чтобы оценить углы засечки на снимках проекта, выполните следующее:
 - 1. Создайте карту качества стерео для блока изображений (см. раздел «Оценка качества стерео» руководства пользователя «Векторизация»).
 - Измените расцветку карты качества стерео в соответствии со значениями атрибута st_ang (Векторы > Атрибуты > Расцветка по значению атрибута, см. разделы «Оценка качества стерео» и «Изменение расцветки векторов» руководства пользователя «Векторизация»).
 - 3. Для того чтобы получить информацию о значении атрибута st_ang для выбранного узла карты качества стерео, выделите соответствующий узел карты качества стерео и выберите **Окна > Атрибуты объектов**.
- 5. В разделе **Начальное приближение** выберите способ расчета диапазона высот для построения ЦМР:
 - Диапазон высот стереопары диапазон высот рассчитывается отдельно для каждой стереопары из высот ранее измеренных в проекте связующих точек;
 - Диапазон высот проекта диапазон высот выбирается из значений Высота местности в свойствах проекта или рассчитывается из высот ранее измеренных в проекте пикетов;
 - Заданная высота введите значение высоты в метрах для использования в качестве начального приближения;

Поле **Расширение диапазона** позволяет увеличить на заданное значение диапазона высот для построения ЦМР. В режиме **Заданная высота** определяет рабочий диапазон высот (область поиска).

6. В разделе **Рабочая папка** нажмите на кнопку ____ и выберите **пустую** папку в ресурсах активного профиля для сохранения выходной матрицы высот.

Перед выполнением операции из выбранной папки удаляются все данные.

Имя выходной матрицы высот — *final_dem.x-dem* (задается автоматически). Имя выходной матрицы высот с заполненными пустыми ячейками (см. пункт **12**) — *final_dem_tmp.x-dem* (задается автоматически).

- 7. В разделе Параметры SGM выберите метод расчета:
 - СТ метод выбранный по умолчанию;

- **МІ** метод, менее чувствительный к нелинейным измерениям яркости снимков, но более требовательный к производительности (длительность построения ЦМР увеличивается в 2-3 раза).
- 8. [опционально] Установите значение **Максимального поперечного параллакса** пикселях.
- 9. Для более детальной настройки параметров расчета SGM нажмите **Дополнительно...**. Открывается окно **Параметры SGM**.

📀 Параметры SGM	x
🕼 Ограничивать область вычисления (пиксели)	5000
Направлений расчёта	8
Штраф1	5.0
Штраф2	100.0
Радиус сглаживания гистограмм	3
Радиус вычисления попиксельных штрафов	3
Интерполяция карты диспаратности	2
Минимальная область перекрытия	20
Радиус медианного фильтра	10
Радиус сглаживания исходных растров	1
Фильтрация ошибок в ЦМР	100 👘 кв. пикс.
	ОК Отмена

Рис. 111. Параметры SGM

Параметр	Описание
Ограничивать область вычисления (пиксе- ли)	Определяет размер частей, на которые разби- ваются эпиполярные изображения. Влияет на производительность.
Направлений расчета	Количество направлений расчета. Влияет на точность и время построения ЦМР. Рекомен- дуемые значения: 8, 16, 32.
Штраф 1	Штраф за изменение параллакса на 1 пиксель. Рекомендуется увеличивать значение при ис- пользовании сильно зашумленных изображе- ний. Допускается уменьшение значения для повышения точности ЦМР при использовании качественных данных.
Штраф 2	Штраф за изменение параллакса больше чем на единицу. Рекомендуется увеличивать зна- чение при использовании сильно зашумлен- ных изображений. Допускается уменьшение

Параметр	Описание
	значения для повышения точности ЦМР при использовании качественных данных.
Радиус сглаживания гистограмм	Параметр, используемый только при расчете методом МI (см. выше). Определяет степень сглаживания гистограммы эпиполярных изображений.
Радиус вычисления попиксельных штра- фов	Полуразмер прямоугольной маски корреляции в пикселах по осям X и Y.
Интерполяция карты диспаратности	Расстояние интерполяции при автозаполнении выбитых отсчетов («дырок») по соседним пикселам.
Минимальная область перекрытия	Минимальная область перекрытия частей эпиполярного изображения в пикселях. Реко- мендуемое значение: не менее 20.
Радиус медианного фильтра	Радиус медианного фильтра для фильтрации карты параллаксов <i>отдельной</i> стереопары.
Радиус сглаживания исходных растров	Параметр сглаживающего фильтра для предо- бработки эпиполярных изображений.
Фильтрация ошибок в ЦМР	Позволяет удалить изолированные области матрицы высот (размером менее заданного), при отдельной обработке каждой стереопары.

Изолированные области матрицы высот — области со значениями, находящиеся вне основной матрицы высот или среди пустых ячеек.

- 10. [опционально] В разделе Дополнительная обработка задайте следующие параметры фильтрации:
 - установите флажок Медианный фильтр для использования медианной фильтрации при построении матрицы и задайте Параметры использования фильтра;
 - установите флажок Сглаживающий фильтр для использования его при построении матрицы и задайте Параметры использования фильтра.
 - установите значение Минимального количества отсчетов в перекрытии для того чтобы настроить надежность отсчетов в матрице высот.

Данный параметр определяет минимальное количество перекрывающихся стереопар, необходимых для вычисления результирующего значения ячейки матрицы высот.

Ячейка итоговой матрицы высот будет записана в случае, если количество перекрывающихся стереопар, использованных при её расчете равно заданному значению (или превышает его).

Корректный выбор значения данного параметра зависит от минимального перекрытия стереопар в блоке и использования межмаршрутных стереопар при расчете матрицы высот (см. пункт **4**).

Рекомендованное значение, установленное по умолчанию — 2. При малом перекрытии стереопар рекомендуется снизить значение **Минимального количества** отсчетов в перекрытии до единицы.

Для того чтобы произвести *оценку* перекрытия стереопар в проекте выберите **Блок - Построить карту перекрытий** (см. раздел «Построение карты перекрытия» руководства пользователя «Создание проекта»).

Функция Блок > Построить карту перекрытий позволяет примерно *оценить* перекрытие стереопар в проекте, т. к. построение карты перекрытий выполняется для *снимков*, но не для *стереопар*.

11. [опционально] Установите флажок Создавать облако точек (LAS) для записи файла LAS, содержащего облако точек (см. руководство пользователя «Обработка лидарных данных»). Для более детальной настройки параметров создания облака точек нажмите Параметры.... Открывается окно Параметры построения LAS:

Данная функция доступна только для проектов типа «Центральная проекция» (см. подробнее раздел «Типы проектов» руководства пользователя «Создание проекта»).

При установленном флажке Создавать облако точек (LAS) рекомендуется использовать режим распределенной обработки при построении плотной ЦМП методом SGM.

Облако точек будет сохранено в отдельном каталоге LAS, находящемся в папке, выбранной для сохранения выходной матрицы высот, в ресурсах активного профиля.

😔 Параметры построения LAS	×
Минимальный угол засечки	β.0 -
Максимальный угол засечки	45.0
Разрешение облака точек	2.0 🚔 m
Количество отражений	2
🔲 Удалить точки выше ЦМП	0.0 n
ОК	Отмена

Рис. 112. Параметры построения LAS

Задайте Минимальный и Максимальный угол засечки в градусах;

Для того чтобы оценить углы засечки на снимках проекта, выполните следующее:

1. Создайте карту качества стерео для блока изображений (см. раздел «Оценка качества стерео» руководства пользователя «Векторизация»).

- Измените расцветку карты качества стерео в соответствии со значениями атрибута st_ang (Векторы > Атрибуты > Расцветка по значению атрибута, см. разделы «Оценка качества стерео» и «Изменение расцветки векторов» руководства пользователя «Векторизация»).
- 3. Для того чтобы получить информацию о значении атрибута st_ang для выбранного узла карты качества стерео, выделите соответствующий узел карты качества стерео и выберите **Окна > Атрибуты объектов**.
- Задайте Разрешение облака точек в метрах;
 - - , По умолчанию **Разрешение облака точек** вдвое превышает **Размер ячейки матрицы высот** (см. ниже).

Не рекомендуется задавать **Разрешение облака точек** меньшее чем **Размер** ячейки матрицы высот.

- Задайте Количество отражений минимально необходимое количество стереопар, на основании которых должна быть вычислена точка;
- установите флажок Удалить точки выше ЦМП для удаления точек, находящихся над поверхностью матрицы высот. Введите значение допустимого превышения над поверхностью матрицы высот, в метрах.

В результате, при создании облака точек LAS, будут автоматически удалены все точки, находящиеся над поверхностью матрицы высот, за исключением не вышедших за пределы заданного допустимого превышения;

Слишком низкое или нулевое значение допустимого превышения может привести к удалению «хороших» точек и, как следствие, к «разреженности» облака точек.

Рекомендуемое значение — не менее СКО по Z в стереопарах (см. раздел «Краткий отчет об ошибках» руководства пользователя «Уравнивание сети»).

Данная функция идентична функции **Удалить точки выше > Матрицы высот** в окне **Фильтрация LAS** (см. раздел «Фильтрация LAS» руководства пользователя «Обработка лидарных данных»).

12. [опционально] В разделе **True Ortho** установите флажок **Создавать True Ortho** для создания ортофотоплана (true ortho), ограниченного матрицей высот. Ортофотоплан будет создан в рабочей папке (см. пункт **6**), в формате PHOTOMOD MegaTIFF (*.prf).

Создание ортофотоплана существенно (примерно в 2 раза) увеличит временные затраты при создании матрицы высот.

Программа *PHOTOMOD GeoMosaic* позволяет впоследствии сохранить полученный ортофотоплан в любом из доступных для неё форматов (см. руководство пользователя «Создание ортофотоплана»).

Имя выходного ортофотоплана — *final_ortho.prf* (задается автоматически). Имя выходного ортофотоплана с заполненными пустыми областями — *final_ortho_tmp.prf* (задается автоматически).

Для более детальной настройки параметров создания ортофотоплана (true ortho) нажмите **Параметры...**. Открывается окно **Заполнение пустых ячеек**:

😔 Заполнение пустых ячеек		×
ЦМР		
Минимальная высота здания	2.0 📮 M	
Размер кэша при заполнении 1	L500 🚔 M6	
True Ortho		
🔲 Глобальное выравнивание яр	окости	Параметры
🔽 Заполнять пустые ячейки		
📝 Перезаписывать значащие я	чейки	
Интерполировать незаполно	енные пустые ячейки	
📝 Заполнять единичные пусть	іе ячейки	
Радиус оценки видимости		100.0 🚔 м
Шаг оценки видимости	1.0 м	
Максимальное количество изо	16	
🔽 Фильтровать выбросы		
Размер апертуры 3	×	
Порог фильтрации 10	×	
Перезалисывать существующ	we LIMP/True Ortho	
	, q.m. / Hue oraio	
	ОК	Отмена

Рис. 113. Параметры построения True Ortho

- В разделе ЦМР задайте параметр Минимальная высота здания в метрах, для того чтобы исключить здания из процесса интерполяции пустых областей матрицы высот;
- В разделе ЦМР задайте параметр Размер кеша при заполнении в мегабайтах — максимальный размер памяти, выделяемый под одну задачу при построении true ortho;
- В разделе True Ortho установите флажок Глобальное выравнивание яркости для того чтобы применить глобальное выравнивание яркости по областям перекрытия снимков, при построении ортофотоплана. Для более детальной настройки параметров выравнивания яркости нажмите Параметры.... Открывается окно Параметры:

😝 Параметры	X
Параметры выравнивания яркости	
Использовать статистику по перекрытиям с весом	5.0
Использовать статистику по снимкам целиком с весом	1.0
Параметры фиксации яркости	
📝 Фиксировать снимки на границах блока с весом	1,0
ОК	Отмена

Рис. 114. Параметры выравнивания яркости

Открывшееся окно позволяет изменить следующие настройки глобального выравнивания яркости:

- Использовать статистику по перекрытиям с весом позволяет использовать вес только областей перекрытий снимков;
- Использовать статистику по снимкам целиком с весом позволяет использовать вес всех снимков блока;

Если блок изображений содержит снимки существенно различающиеся по яркости, рекомендуется устанавливать малое значение.

 Фиксировать снимки на границах блока с весом — позволяет не применять глобальное выравнивание к снимкам на границах блока;

Подробное описание процессов выравнивания яркости при построении ортофотоплана см. в руководстве пользователя «Создание ортофотоплана«.

- [опционально] снимите флажок Заполнять пустые ячейки в разделе True Ortho для того чтобы не заполнять пустые ячейки при создании матрицы высот (что, соответственно, может привести к созданию незаполненных областей при построении ортофотоплана) или настройте следующие параметры:
 - Перезаписывать значащие ячейки позволяет исключить изолированные области матрицы высот из процесса интерполяции незаполненных областей (интерполировать их как пустые ячейки);

Изолированные области матрицы высот — области со значениями, находящиеся вне основной матрицы высот или среди пустых ячеек.

 Интерполировать незаполненные пустые ячейки — позволяет интерполировать незаполненные области матрицы высот/ортофотоплана;

- Заполнять единичные пустые ячейки позволяет интерполировать области без данных размером в один пиксель в матрице высот и на ортофотоплане;
- Радиус оценки видимости расстояние, в пределах которого на снимках проекта производится проверка видимости точек, расположенных в незаполненных областях ортофотоплана;
- Шаг оценки видимости шаг, с которым на снимках проекта производится проверка видимости точек, расположенных в незаполненных областях ортофотоплана;
- Максимальное количество изображений на пиксель максимальное количество снимков проекта, на которых производится проверка видимости точек, расположенных в незаполненных областях ортофотоплана;
- Фильтровать выбросы позволяет выполнить медианную фильтрацию ортофотоплана с заданным Порогом фильтрации. Статистика собирается в окрестности, площадь которой определяется Размером апертуры. Данный фильтр предназначен для удаления одиночных пикселей с неестественной яркостью.
- [опционально] установите флажок Перезаписывать существующие ЦМР/True Ortho для того чтобы не использовать данные, находящиеся в рабочей папке (если построение матрицы высот и ортофотоплана уже выполнялось) и перезаписать их.

Рис. 115. Пример незаполненной области на true ortho, где: а — высота здания (см. параметр Минимальная высота здания), b — изолированные ячейки, расположенные в незаполненной области матрицы высот (см. флажок Перезаписывать значащие ячейки), с — Шаг оценки видимости, R — Радиус оценки видимости, S — незаполненная область на матрице высот/ортофотоплане (обусловленная тем, что снимок является центральной проекцией местности и объекты, возвышающиеся над поверхностью земли, закрывают часть местности, которая не изображается на снимке). Так же на качество ортофотоплана влияют зоны, закрытые тенью от объекта, что требует выравнивания яркости. [опционально] В разделе **3D-TIN** установите флажок **Создавать 3D-TIN** для создания текстурированной 3D поверхности TIN, ограниченной матрицей высот. 3D поверхность TIN будет создана в рабочей папке (см. пункт **6**), в формате *.tx3.

Для дальнейшей работы с текстурированными 3D поверхностями TIN используется программа *PHOTOMOD 3D-Mod* (подробное описание см. в руководстве пользователя «Трехмерное моделирование»).

Имя выходной поверхности 3D-TIN — *tin.tx3* (задается автоматически).

Для более детальной настройки параметров построения 3D-TIN нажмите **Па-** раметры.... Открывается окно **Построить 3D-TIN**:

😎 Построение 3D-ТИН по матри	це высот			×
Прореживание				
По критерию точности		🔘 По количественному критер	оию	
Отклонение от исходной поверхности, м	1.0	Максимальное число треугольников	1000000	×
Минимальное число треугольников	10000 ×			
Тайлы		Текстуры		
🔲 Делить на тайлы		V Строить текстуры		
Размер тайла, пикс	2048	Размер текстуры, пикс	4096	* *
Перекрытие тайлов, пикс	32 ×	Выравнивание яркости		
Использовать все доступные я	дра ЦПУ			
		0	К Отмена	

Рис. 116. Окно «Построить 3D-TIN»

- В разделе **Прореживание** выберите метод упрощения исходной поверхности 3D-TIN, построенной по входной матрице высот:
 - По критерию точности задайте Минимальное число треугольников в итоговой 3D-TIN и её максимально допустимое Отклонение от исходной поверхности 3D-TIN, в метрах;
 - По количественному критерию задайте Максимальное число треугольников в итоговой 3D-TIN.
- [опционально] В разделе Тайлы установите флажок Делить на тайлы для того чтобы разделить поверхность 3D-TIN и её текстуры на фрагменты;

Рекомендуется установливать флажок **Делить на тайлы** при построении 3D-TIN на территории с большой площадью, для повышения быстродействия системы.

- В поле Размер тайла задайте размер фрагментов текстур 3D-TIN, в пикселях;
- В поле Перекрытие тайлов задайте перекрытие между фрагментами 3D-TIN, в пикселях.

Не рекомендуется устанавливать нулевой размер перекрытия.

- [опционально] В разделе **Текстуры** установите флажок **Строить текстуры** для создания текстурированной поверхности 3D-TIN:
 - Задайте Размер текстуры;

Рекомендуется задавать **Размер текстуры** превышающий **Размер тайла** как минимум в 2 раза. Увеличение данного параметра ведет к повышению разрешения текстуры и увеличению временных затрат на построение 3D-TIN.

- [опционально] Установите флажок Выравнивание яркости для выравнивания яркости между текстурами треугольников;
- [опционально] Чтобы использовать для вычислений все ядра процессора рабочей станции, в системе по умолчанию установлен флажок Использовать все доступные ядра ЦПУ. Снимите флажок для использования только одного ядра.
- 14. [опционально] Для удаления данных обработки после завершения вычислений установите флажок Удалить промежуточные данные. Нажмите на кнопку (оценить размер) для получения информации о пространстве на диске, занятом промежуточными данными.

Не рекомендуется удалять промежуточные данные до окончательного построения матрицы высот. При удалении промежуточных данных невозможно запустить отдельные этапы (фильтрацию или сглаживание) без повторного расчета матрицы высот.

- 15. В разделе **Параметры выходной матрицы высот** задайте границы матрицы высот в поля **Север**, **Запад**, **Восток**, **Юг**. В полях **Высота** и **Ширина** отображаются рассчитанные размеры границы матрицы в метрах.
- 16. Задайте Размер ячейки матрицы высот в метрах для изменения размера элемента выходной матрицы. В полях Высота и Ширина раздела Размер ячейки отображается число узлов, рассчитанное с заданным размером ячейки матрицы высот. Также отображается Примерный размер матрицы высот в мегабайтах.

Э Значение параметра Размер ячейки матрицы высот не должно быть меньше среднего размера пиксела изображения (GSD). При использовании меньшего размера ячейки увеличивается время построения матрицы и размер выходного файла, но точность обработки при этом не повышается

Нажмите на кнопку **Из проекта** для того чтобы задать размер ячейки матрицы высот, равный среднему значению размера пикселя на местности.

- 17. [опционально] В системе предусмотрена возможность расчета параметров выходной матрицы высот из параметров существующей. Для этого нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот для расчета в ресурсах активного профиля.
- 18. Нажмите ОК для запуска процесса построения плотной матрицы высот в обычном режиме.

Чтобы построить матрицу высот с использованием распределенной обработки, выполните следующие действия:

При распределенном построении ЦМП методом SGM происходит раздельная обработка стереопар (см. раздел **Область поиска**), которые обрабатываются в отдельных задачах. При выполнении последней задачи происходит объединение полученных данных.

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).
- 2) Откройте **Монитор распределенной обработки** и установите **Макс. колво задач** не более одной для каждого клиента.
- 3) Нажмите на кнопку Распределенная обработка.

В зависимости от размера области построения процесс может занять длительное время.

Для обеспечения быстродействия системы рекомендуется использовать режим распределенной обработки при построении плотной матрицы высот методом SGM.

7.3.8. Пакетное построение ЦМР

В системе предусмотрена возможность построения цифровой модели рельефа в пакетном режиме. Пакетный режим позволяет одновременно построить и сохранить несколько файлов с TIN и матрицей высот в указанной папке.

При пакетном построении ЦМР исходные векторные ресурсы разделяются на листы по заданным параметрам. Для каждого листа векторов строится TIN, по

которому строятся матрицы высот, а затем сшиваются для создания единой выходной матрицы высот.

Для пакетного построения выполните следующие действия:

 Выберите ЦМР > Матрицы высот > Построить матрицу высот > Пакетное построение. Открывается окно Пакетное построение ЦМР — Шаг 1 из 2: Исходные данные.

🕏 Пакетное построение матрицы вы	ысот			<u>_ </u>
Шаг 1 из 2: Исходные данные				
	Pa3 75.00 75.00	× ×	/Techsupport/New_Zealar /Techsupport/New_Zealar	d_Group/New_zeal d_Group/New_zeal
	< Наза	а,	Далее >	Отмена

Рис. 117. Формирование списка исходных векторных ресурсов для пакетного построения ЦМР

- 2. В дереве ресурсов выберите папку, содержащую векторные объекты.
 - Кнопка 🔚 позволяет отобразить все доступные ресурсы во вложенных файлах. Кнопка 🕼 позволяет обновить часть окна с ресурсами.
 - Λ_{\pm}

Кнопка 💌 позволяет отобразить список из 10 последних выбранных ресурсов.

3. В списке выберите векторный файл и нажмите на кнопку >, чтобы добавить слой.

Кнопки >> и << позволяют добавить/удалить из списка все добавленные файлы с векторных объектов, кнопка < позволяет убрать из списка выделенный файл.

- 4. Повторите действия 2-3 для добавления последующих файлов с векторными объектами.
- 5. Нажмите кнопку Далее. Открывается окно Пакетное построение ЦМР Шаг 2 из 2: Параметры.

🔁 Пакетное построение матрицы высот	
Шаг 2 из 2: Параметры	
Цаг 2 из 2: Параметры Действия 1. Разбить входные данные на листы - макс. количество точек в листе, 1.0 22 млн. точек - перекрытие листов 50 22 % 2. ⊽ Построить TIN по полученным листам 3. ⊽ Построить матрицу высот по полученным TIN Распределенное построение Рабочая папка	Параметры натрицы высот Границы Запад 135042.12529 24 m Восток 213972.68696 24 Юг 184793.20236 24 m Высота 60611.922 m Ширина 78930.562 m
 Перед выполнением операции все ресурсы из рабочей папки будут удалены! Фильтрация Фильтр по 2-диапазону Zmin -20.0 🕅 m Zmax 60.0 🕅 m	Размер ячейки Размер ячейки матрицы высот 50.0 12 m Количество ячеек: Высота 1214 Ширина 1580 Примерный размер матрицы высот: 9.73 МБ Рассчитать параметры по существующей матрице высот
	< Назад Выполнить Отмена

Рис. 118. Параметры пакетного построения матрицы высот

- В разделе Действия определите задачи для выполнения в процессе построения ЦМР:
 - Разбить входные данные на листы определите максимальное количество точек в листе в миллионах точек, а также задайте размер перекрытия листов в процентах.
 - Л_ Исходя из заданных параметров определяется количество листов, при выполнении разбивки в указанной выходной папке создаются векторные файлы с расширением x-data и именами *sheet_№ листа*.
 - 2) Построить TIN по полученным листам (установлен по умолчанию) служит для построения TIN по разделенным на листы слоям с векторными объектами. При выполнении этой задачи в указанной выходной папке создаются файлы с расширением x-tin и именами sheet_№ листа, соответствующие векторным файлам.
 - Построить матрицу высот по полученным TIN (установлен по умолчанию) служит для построения единой матрицы по всей TIN, построенной по полученным листам.

Задача выполняется в два этапа: на каждый лист по TIN строится матрица высот, затем все полученные матрицы сшиваются в одну. Таким образом в выходной папке создается файл с расширением x-dem.

- 7. [опционально] Установите флажок **Распределенное построение**, чтобы использовать возможности распределенной обработки для пакетного построений ЦМР.
- 8. В разделе **Рабочая папка** определите **пустую** папку для размещения выходных данных в ресурсах активного профиля.

Перед выполнением операции из выбранной папки удаляются все данные.

- [опционально] В разделе Фильтрация установите флажок Фильтр по Zдиапазону для применения фильтрации векторов и/или TIN. При фильтрации удаляются точки и вершины полилиний/полигонов (в том числе вершин TIN), Z-координата которых не попадает в диапазон, указанный в полях Zmin и Zmax в метрах.
- 10. В разделе Параметры матрицы высот задайте границы матрицы высот в поля Север, Запад, Восток, Юг. В полях Высота и Ширина отображаются рассчитанные размеры границы матрицы в метрах.
- 11. Задайте Размер ячейки матрицы высот в метрах для изменения размера элемента выходной матрицы. В полях Высота и Ширина раздела Размер ячейки отображается число узлов, рассчитанное с заданным размером ячейки матрицы высот. Также отображается Примерный размер матрицы высот в мегабайтах.

Размер ячейки матрицы высот должен быть соизмерим со средним расстоянием между пикетами. При использовании меньшего размера ячейки увеличивается время построения матрицы и размер выходного файла, но точность обработки при этом не повышается.

- 12. [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.
- 13. Нажмите на кнопку **Выполнить**. Выдается сообщение об удалении всех данных в указанной выходной папке. Создается новый слой с матрицей высот в *Диспетчере слоев*.

При установленном флажке Распределенное построение выполните следующие действия:

1) Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).

2) Нажмите на кнопку Выполнить. Открывается окно Распределенный пересчет матрицы высот.

🌻 Распределенный пересчет матриць	і высот	_ 🗆 ×
Количество фрагментов матрицы высот:	6	
Количество фрагментов на одну задачу:	1	
Временная папка для распределенной обра	ботки:	
/Techsupport/Waldkirch_Group/delme		
Выходной ресурс с матрицей высот:		
/Techsupport/Waldkirch_Group/dem.x-dem		
	ОК	Отмена

Рис. 119. Параметры расределенного пакетного построения матрицы высот

- 3) Количество фрагментов матрицы высот, на которые она делится при распределенной обработке, рассчитывается автоматически и зависит от размеров матрицы. Рекомендуется задавать Количество фрагментов на одну задачу из расчета одной задачи на один компьютер.
- 4) Определите **Временную папку для распределенной обработки** для хранения временных файлов.
- 5) Задайте имя и путь для выходного файла в ресурсах активного профиля.
- 6) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.3.9. Построение ЦМР из внешнего источника в рамках выбранного полигона

В системе предусмотрена возможность построения матрицы высот из внешнего источника (данные SRTM) в границах области, заданной полигоном.

SRTM (от англ. Shuttle Radar Topographic Mission) — данные, полученные в результате международной миссии по построению цифровой модели рельефа (ЦМР) поверхности Земли. Данные SRTM представляют собой матрицу высот, охватывающую территорию суши от 60°с.ш. до 54°ю.ш. и некоторые участки моря.

Существует несколько версий (релизов) данных SRTM, отличающихся степенью дополнительной обработки.

Данные SRTM распространяются в двух вариантах:

 SRTM1 — матрица с размером ячейки 1x1 угловую секунду (т. е. с пространственным разрешением 30 метров) — данные доступны лишь на территорию США; SRTM3 — матрица с размером ячейки 3х3 угловых секунды (т. е. с пространственным разрешением 90 метров) — общедоступные данные на остальную охваченную в процессе миссии поверхность Земли.

На данный момент в системе предусмотрена возможность построения матрицы высот из данных SRTM версии 4.1 с размером ячейки 3х3 угловых секунды (SRTM3 v4.1), представленых в архиве *.zip.

Данные SRTM поставляются в виде *тайлов* — фрагментов матрицы высот SRTM, имеющих размер 1x1 или 5x5 градусов, представленных в архивах *.zip. Для идентификации тайлов используются сетки-разграфки в формате Shape с шагом 1 или 5 градусов, соответственно.

Перед построением матрицы высот из внешнего источника в границах области заданной полигоном, необходимо:

- установить глобальную рабочую систему координат (см. разделы «Системы координат» и «Свойства проекта» руководства пользователя «Создание проекта»). Иначе при построении матрицы высот выдается сообщение о соответствующей ошибке;
- импортировать в систему PHOTOMOD файл Shape соответствующей сетки-разграфки (см. раздел «Импорт из Shape» руководства пользователя «Векторизация») и сохранить его в формате используемом системой PHOTOMOD.

Для построения матрицы высот из внешнего источника в границах области, заданной полигоном выполните следующее:

- 1. Загрузите или создайте новый полигон (см. руководство пользователя «Векторизация»);
- Выделив полигон, выберите ЦМР > Матрицы высот > Построить матрицу высот > Создать из внешнего источника в границах текущего полигона.... Открывается окно Параметры построения матрицы высот. В окне настройте следующие параметры:

😎 Параметры	22
Тип цифровой модели рельефа	SRTM3 v4.1 TIFF -
Векторы тайлового покрытия	
Атрибут с именами листов	
Каталог с моделью рельефа	
🔲 Искать в подкаталогах	
Каталог с временными данными	
Выходная матрица высот	
Размер ячейки 1.0	
📝 Пересчитывать в систему коор	одинат текущего проекта
🔽 Открыть матрицу высот после	окончания процесса
	ОК Отмена

Рис. 120. Параметры построения матрицы высот из внешнего источника в границах области, заданной полигоном

- Тип цифровой модели рельефа выберите из тип внешних данных используемых для создания матрицы высот;
- Векторы тайлового покрытия укажите путь к предварительно импортированному (см. выше) файлу сетки разграфки в формате используемом системой *PHOTOMOD*;
- Атрибут с именами листов введите имя атрибута, в котором содержатся имена архивов с данными SRTM. Необходимое имя атрибута содержится в атрибутах векторного слоя, полученного при импорте сетки разграфки (см. предыдущий пункт);
- Каталог с моделью рельефа укажите каталог в котором содержатся данные SRTM представленные в архивах в формате *.zip;
- [опционально] установите флажок Искать в подкаталогах для того, чтобы осуществить поиск *.zip архивов с тайлами SRTM не только по заданному пути, но и во всех его подкаталогах;
- Каталог с временными данными укажите папку для хранения временных файлов;

- Выходная матрица высот укажите папку в ресурсах активного профиля для сохранения выходной матрицы высот;
- Размер ячейки задайте размер ячейки матрицы высот в метрах для определения размера элемента выходной матрицы высот;
- установите флажок Пересчитывать в систему координат текущего проекта для того чтобы пересчитать выходную матрицу высот в систему координат текущего проекта;

Данные SRTM представлены в системе координат WGS 84.

- [опционально] установите флажок **Открыть матрицу высот после оконча**ния процесса.
- 3. Нажмите ОК.

7.4. Фильтрация матрицы высот

В системе предусмотрена возможность фильтрации матрицы высот. Для редактирования матрицы высот предусмотрены следующие фильтры:

- Фильтр строений и растительности и Фильтр по углу наклона служат для поиска и исправления участков матрицы высот отображающих такие объекты как дома, деревья, машины, а так же фильтрации случайных выбросов. В результате работы фильтра матрица высот описывает только рельеф местности;
- Медианный фильтр и Сглаживающий фильтр служат для фильтрации случайных выбросов — точек, значительно отстоящих от средней сглаженной поверхности рельефа. В результате работы фильтра матрица высот описывает только рельеф местности;
- Фильтр по характеристикам изображения служит для удаления участков матрицы высот в зависимости от характеристик растрового изображения. При подготовительном этапе (т.н. «Обучение»), оператором вручную отбираются характерные участки растра, служащие в качестве эталонных образцов при процессе фильтрации.

7.4.1. Фильтр строений и растительности

В системе предусмотрена возможность фильтрации строений и растительности матрицы высот. При фильтрации происходит вычисление базисных пикетов с заданным коэффициентом прореживания для матрицы высот. При этом происходит удаление, исправление или обнаружение пикетов, попавших на дома, деревья, машины, в ямы и т. п., полученных при автоматическом расчете пикетов, а также фильтрация случайных выбросов. В результате работы фильтра матрица высот описывает только рельеф местности.

🌲 Параметры фильтра строений и растительности			_	
🗢 🕞 🔚 🖫 🗠 🔊	Проход			
Слой dem test (Матрица высот)	Имя Основной			
, Выходная матрица высот	Ячейка исходной матрицы высот	10.000000	m	
/Techsupport/WorldView_Group/WorldViewStereo_India/Data/dem/dem test	Коэффициент прореживания для полу	чения базисных точек	1.0	
	Расстояние между базисными точками	2.000000	m	
Проходы фильтра		,		
Основной	-	Ближнее	Дальнее	
🗹 Дополнительный	Расстояние взаимного влияния точек	6.0	54.0	m
		Вверх	Вниз	
	Отфильтровывать выбросы		V	
	Только острые выбросы			
	Угол наклона для определения острых выбросов	45	45	۰
	Максимальная площадь плоских выбросов	50000	2000	m^2
	Радиус промежуточного сглаживания	108	108	m
Скрыть параметры прохода <<	Допустимое отклонение пикета от сглаженной поверхности	1.0	1.0	m
	<u></u>	ОК	Отмен	a

Рис. 121. Фильтрация строений и растительности по матрице высот

Окно Параметры фильтра строений и растительности позволяет задать параметры фильтрации и настроить количество проходов фильтра. В поле Слой отображается имя активного векторного слоя. Окно содержит панель стандартных инструментов.

Кнопка	Назначение
	позволяет загрузить сценарий работы фильтра из ресурса *.x-filter вне ресурсов активного профиля
5	позволяет загрузить сценарий работы фильтра из pecypca *.x-filter в pecypcax активного профиля
	позволяет сохранить текущий сценарий работы фильтра в ресурсе *.x-filter вне ресурсов ак- тивного профиля
5	позволяет сохранить текущий сценарий работы фильтра в ресурсе *.x-filter в ресурсах актив- ного профиля
N N	позволяет отменить все изменения, внесенные в сценарий
κ	позволяет вернуться к стандартному сценарию из двух проходов с настройками по умолчанию (независимо от того, какой сценарий был загру- жен)

Для фильтрации строений и растительности в матрице высот выполните следующие действия:

- 1. Сделайте активным слой с матрицей высот.
- 2. Выберите **ЦМР** > **Матрицы высот** > **Фильтр строений и растительности**. Открывается окно **Параметры фильтра строений и растительности**.

👼 Параметры фильтра строений и растительности 📃 📃 🗙
🔁 🔁 🔚 📲 🗠 🗞
Проходы фильтра
+ - 🖟 🕆
Проход
🔽 Основной
🗹 Дополнительный
показать параметры прохода >>
🔽 Использовать все доступные ядра ЦПУ
ОК Отмена

Рис. 122. Фильтрация строений и растительности по матрице высот

- 3. В разделе **Выходная матрица высот** нажмите на кнопку и определите имя и папку для хранения выходной матрицы высот в ресурсах активного профиля.
- 4. [опционально] Задайте количество проходов фильтра:
 - по умолчанию используется два прохода со стандартными параметрами Основной и Дополнительный. Снимите флажки для изменения количества проходов;
 - кнопка + позволяет добавить новый проход фильтра;
 - кнопка позволяет удалить выделенный проход фильтра;
 - кнопки 🖶 и 🛉 позволяют переместить вверх/вниз выделенный проход.
- 5. Выделите имя прохода и нажмите на кнопку **Показать параметры прохода** для отображения и настройки следующих параметров прохода фильтра:

😤 Параметры фильтра строений и растительности			-	
🕞 🦻 🔚 💭 🔊 Слой dem test (Матрица высот) Выходная матрица высот	Проход Имя Дополнительный Ячейка исходной матрицы высот Козднаживат послеживается для полу		m	
//Techsupport/WorldView_Group/WorldViewStereo_India/Data/dem/dem test	Расстояние между базисными точками	2.000000	m	
Проход Основной Дополнительный	Расстояние взаимного влияния точек	Ближнее 6.0	Дальнее 162.0	m
	Отфильтровывать выбросы Только острые выбросы	вверх Г	вниз Г	
	Угол наклона для определения острых выбросов Максимальная площадь	45	45	•
	плоских выбросов Радиус промежуточного сглаживания	50000	2000 X	m^2 m
Скрыть параметры прохода <<	Допустимое отклонение пикета от сглаженной поверхности	0.25	0.25	m
		ОК	Отмена	•

Рис. 123. Настройка параметров фильтра строений и растительности

- [опционально] чтобы изменить имя прохода фильтрации в поле **Имя** введите название;
- в поле **Ячейка исходной матрицы высот** отображается размер ячейки в матрице высот без применения фильтра в метрах;
- задайте Коэффициент прореживания для получения базисных точек по матрице высот. От заданной величины и от параметра Ячейка исходной матрицы высот зависит параметр Расстояние между базисными точками в метрах;
- задайте Ближнее и Дальнее расстояние взаимного влияния точек в метрах для определения радиуса окружности, в области которой значения отметок пикетов анализируются на предмет ошибок. Для ближнего расстояния (минимального радиуса окружности) рекомендуется задавать значение, составляющее 3-5 величин средних расстояний между пикетами;
- задайте следующие параметры отбраковки Вверх (над поверхностью) и/или Вниз (под поверхностью):
 - Отфильтровывать выбросы позволяет выбрать пикеты для фильтрации: пикеты на поверхности (высотные объекты) и/или пикеты под поверхностью (ямы);

Для работы фильтра необходимо установить хотя бы один флажок.

 Только острые выбросы — служит для фильтрации только острых выбросов над/под поверхностью, которые определяются значениями параметров Угол наклона для определения острых выбросов и Расстояние взаимного влияния пикетов, остальные параметры не учитываются;

Если угол между тремя точками превышает значение параметра Угол наклона для определения острых выбросов, то выброс принято называть *острым*.

- Угол наклона для определения острых выбросов позволяет задать угол наклона относительно выбранной отсчетной поверхности (над и/или под поверхностью) для определения острых выбросов;
- Максимальная площадь плоских выбросов позволяет определить максимальную площадь плоских выбросов (над/под поверхностью) групп точек, образующих гладкие поверхности и отстоящих от некой плоскости соседних точек. Как правило, это точки на крышах зданий, лежащие в одной плоскости;

К плоской поверхности, площадь которой больше заданной величины, фильтр не применяется.

- Радиус промежуточного сглаживания позволяет задать радиус сферы (над/под поверхностью), определяющий степень промежуточного сглаживания поверхности;
- Допустимое отклонение пикета от сглаженной поверхности позволяет определить критерий, по которому ко всем пикетам, отметки которых отличаются от сглаженной поверхности более чем на заданную величину, применяется фильтр;

Кнопка 🐑 позволяет вернуться к стандартному сценарию из двух проходов со всеми настройками по умолчанию (независимо от того, какой сценарий был загружен).

- [опционально] Чтобы задействовать для вычислений все ядра используемого компьютера, в системе по умолчанию установлен флажок Использовать все доступные ядра ЦПУ. Снимите флажок для использования только одного ядра.
- 7. Нажмите ОК. Запускается процесс фильтрации матрицы высот. По окончании процесса фильтрации выдается информационное сообщение о количестве задействованных базисных точек и пикетов к которым применялся фильтр.

😞 PHO	томоі	D 5.25.1585	
A 0	¢	27.01.2014 14:12:21: Создано базисных точек: 4096	
ο	¢	27.01.2014 14:12:23: Удалено базисных точек: 0	
<u>(1)</u> 5	٠	27.01.2014 14:12:23: Всего удалено базисных точек: 0	
▶ 24	- Ó	27.01.2014 14:12:24: Удалено пикетов: 0	
	- Ó	27.01.2014 14:12:24: Всего удалено пикетов: 0	
		ОКДоп	олнительно

Рис. 124. Результаты фильтрации

7.4.2. Фильтр по углу наклона

В системе предусмотрена возможность фильтрации объектов по углу наклона.

При этом происходит обнаружение и удаление отсчетов, попавших на дома, деревья, машины и прочие схожие объекты, а также фильтрация случайных выбросов. В результате работы фильтра матрица высот описывает только рельеф местности.

- 1. Сделайте активным слой с матрицей высот;
- 2. Выберите **ЦМР · Матрица высот · Фильтрация по углу наклона...**. Открывается окно **Фильтрация по углу наклона**;

😝 Фильтрация по углу	наклона			
Входной ресурс				
ort/Lite/Aerial_Surve	y RC20/Data/dem/dem_2.5m.x-dem			
Выходной ресурс				
/Techsupport/Lite/A	verial_Survey RC20/Data/dem/dem_2			
Размер удаляемого об	ъекта			
Длина в плане (max)	40.0 n			
Высота (min)	2.0 🚔 m			
Уровень пирамиды всп	юмогательной матрицы 3			
🔲 Внутри выделенных	полигонов			
🔲 Открыть матрицу по	осле фильтрации			
📝 Удалять промежуточные данные				
Распределенная обра	оботка ОК Отмена			

Рис. 125. Параметры фильтрации по углу наклона

- 3. В разделе **Входной ресурс** нажмите на кнопку и выберите в ресурсах активного профиля матрицу высот для фильтрации;
- 4. В разделе **Выходной ресурс** нажмите на кнопку ____ и определите имя и папку для хранения выходной матрицы высот в ресурсах активного профиля;
- 5. В разделе **Размер удаляемого объекта** задайте характерные размеры удаляемых объектов:
 - Максимальная длина в плане (в метрах);
 - Минимальная высота (в метрах).
- 6. Для того чтобы осуществить первоначальную фильтрацию прореженной исходной матрицы высот, задайте **Уровень пирамиды вспомогательной матрицы** высот, определяющий степень прореживания;

Повышение уровня прореживания позволяет значительно повысить быстродействие системы, снизив качество фильтрации. Рекомендованные значения уровня пирамиды воспомогательной матрицы: 1,2,3.

Задавать нулевое значение настоятельно не рекомендуется.

 [опционально] Установите флажок Внутри выделенных полигонов для того чтобы выполнить фильтрацию фрагментов матрицы высот, ограниченных выделеными полигонами;

Для того чтобы выполнить фильтрацию внутри выделенных полигонов, перед запуском окна **Фильтрация по углу наклона** выполните следующее:

- Создайте векторный слой (см. руководство пользователя «Векторизация»);
- Создайте один или несколько полигонов, которые ограничивают выбранные фрагменты матрицы либо загрузите слой с полигонами для использования их в качестве границ;
- Выделите не менее одного полигона, который используется в качестве границы.
- [опционально] Установите флажок Открыть матрицу после фильтрации для того чтобы после завершения фильтрации открыть выходную матрицу высот в новом слое;
- 9. [опционально] Для удаления данных обработки после завершения вычислений установите флажок **Удалить промежуточные данные**.
- 10. Нажмите ОК. Запускается процесс фильтрации матрицы высот. Выходная матрица высот открывается в новом слое, в случае если бы установлен флажок **Открыть матрицу после фильтрации**.

Чтобы выполнить фильтрацию по углу наклона с использованием распределенной обработки, выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка. Открывается окно Распределенный пересчет матрицы высот.

📚 Распределенный пересчет матрицы	ы высот	
Количество фрагментов матрицы высот:	6	
Количество фрагментов на одну задачу:	1	
Временная папка для распределенной обра	аботки:	
/Techsupport/Waldkirch_Group/delme		
Выходной ресурс с матрицей высот:		
/Techsupport/Waldkirch_Group/dem.x-dem		
_		
	ОК	Отмена

Рис. 126. Параметры расределенной фильтрации матрицы высот

- 3) Количество фрагментов матрицы высот, на которые она делится при распределенной обработке, рассчитывается автоматически и зависит от размеров матрицы. Рекомендуется задавать Количество фрагментов на одну задачу из расчета одной задачи на один компьютер.
- 4) Определите **Временную папку для распределенной обработки** для хранения временных файлов.
- 5) Задайте имя и путь для выходного файла в ресурсах активного профиля.
- 6) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.4.3. Медианный фильтр

В системе предусмотрена возможность использования медианной фильтрации ячеек матрицы высот.

Принцип *медианной фильтрации* заключается в следующей последовательности действий:

- 1. Последовательное сканирование матрицы маской заданного размера. Размер маски определяемого параметром **Апертура** (в ячейках матрицы).
- Замена текущих отметок высот ячеек медианным значением, если разница между текущим значением и медианным значением не больше заданного Порога в метрах.

Для применения медианной фильтрации выполните следующие действия:

- 1. Сделайте активным слой с матрицей высот.
- 2. Выберите ЦМР · Матрицы высот · Медианный фильтр. Открывается окно Параметры медианного фильтра.

😞 Парамет	ры медианного фильтра	X
Порог:	¥.0	м
Апертура:	3	
Распредел	тенная обработка	ОК Отмена

Рис. 127. Параметры медианного фильтра

- Задайте в метрах Порог, с которым сравнивается разница текущего и медианного значения высоты.
- 4. В поле Апертура задайте размер маски сканирования.
- 5. Нажмите ОК. В результате текущие значения высот ячеек матрицы заменяются на медианные значения, если разница между текущими значениями и медианными значениями не превышает заданного **Порога**.

Чтобы выполнить медианную фильтрацию с использованием распределенной обработки, выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка. Открывается окно Распределенный пересчет матрицы высот.

뤚 Распределенный пересчет матрицы	ы высот		_ 🗆 🗙		
Количество фрагментов матрицы высот:	6	_			
Количество фрагментов на одну задачу:	1	1			
Временная папка для распределенной обработки:					
/Techsupport/Waldkirch_Group/delme					
Выходной ресурс с матрицей высот:					
/Techsupport/Waldkirch_Group/dem.x-dem					
	ОК	Отр	іена		

Рис. 128. Параметры расределенной фильтрации матрицы высот

- Количество фрагментов матрицы высот, на которые она делится при распределенной обработке, рассчитывается автоматически и зависит от размеров матрицы. Рекомендуется задавать Количество фрагментов на одну задачу из расчета одной задачи на один компьютер.
- 4) Определите **Временную папку для распределенной обработки** для хранения временных файлов.
- 5) Задайте имя и путь для выходного файла в ресурсах активного профиля.
- 6) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.4.4. Сглаживающий фильтр

В системе предусмотрена возможность использования сглаживающей фильтрации значений матрицы высот.

Для применения сглаживающего фильтра выполните следующие действия:

- 1. Сделайте активным слой с матрицей высот.
- 2. Выберите ЦМР > Матрицы высот > Сглаживающий фильтр. Открывается окно Параметры сглаживающего фильтра.

😎 Параметры сглаживающего фильтра			
Уровень:	μ. 0	▲ ▼	
Апертура:	10	▲ ▼	
🔽 Сглаживание по Гауссу			
Распределенная обработка	ОК	Отмена	

Рис. 129. Параметры сглаживающего фильтра

- 3. В поле Уровень задайте значение коэффициента фильтрации от 0 до 1.
- 4. В поле Апертура задайте размер маски сканирования.
- 5. [опционально] Для применения алгоритма сглаживания по Гауссу по умолчанию установлен флажок Сглаживание по Гауссу.
- 6. Нажмите ОК. В результате текущие значения высот ячеек матрицы заменяются значением с применением фильтра.

Чтобы выполнить сглаживающую фильтрацию с использованием распределенной обработки, выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка. Открывается окно Распределенный пересчет матрицы высот.

🜻 Распределенный пересчет матриць	ы высот	_ 🗆	X
Количество фрагментов матрицы высот:	6	[
Количество фрагментов на одну задачу:	1	[
Временная папка для распределенной обра	ботки:		
/Techsupport/Waldkirch_Group/delme			
Выходной ресурс с матрицей высот:			
/Techsupport/Waldkirch_Group/dem.x-dem			
	ОК	Отмена	

Рис. 130. Параметры расределенной фильтрации матрицы высот

- 3) Количество фрагментов матрицы высот, на которые она делится при распределенной обработке, рассчитывается автоматически и зависит от размеров матрицы. Рекомендуется задавать Количество фрагментов на одну задачу из расчета одной задачи на один компьютер.
- 4) Определите **Временную папку для распределенной обработки** для хранения временных файлов.
- 5) Задайте имя и путь для выходного файла в ресурсах активного профиля.
- 6) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.4.5. Фильтр по характеристикам изображения

В системе предусмотрена возможность фильтрации матрицы высот в зависимости от характеристик растрового изображения. При подготовительном этапе (т.н. «Обучение»), оператором вручную отбираются характерные участки растра (на приведенных в качестве примера изображениях - области покрытые лесом), служащие в качестве эталонных образцов при процессе фильтрации.

Для фильтрации выполните следующие действия:

- 1. Сделайте активным слой с матрицей высот;
- Выделите изображение, по характеристикам которого будет произодиться фильтрация, в 2D-окне или окне Редактор блока. Выберите Окна > Новое 2D-окно (стереопара) (Ctrl+Alt+W) или нажмите на кнопку посновной панели инструментов. Открывается 2D-окно стереопары;

Функция Фильтр по характеристикам изображения работает корректно только в стерео-режиме.

3. Выберите **ЦМР** > **Матрицы высот** > **Фильтр по характеристикам изображения**. Открывается окно **Фильтр по характеристикам изображения**;

😎 Фильтр по характкристикам изображения					
Параметры					
Полуразмер маски 50					
Обучение					
Обучение Число образцов 0	Удалить все				
Тест	Удалить последний				
Чувствительность 15	Сохранить				
	Загрузить				
Слой с исходной матрицей					
dem2_cut (Матрица высот)					
Сохранить результат в					
/Techsupport/Waldkirch_Group/Waldkirch_for_contours					
Фильтровать Распре	деленная обработка				

Рис. 131. Параметры фильтрации по характеристикам изображения

- 4. В разделе **Параметры** задайте **Полуразмер маски** размер стороны сканирующего матрицу высот квадратного окна-маски;
- 5. Наведите маркер на характерную область растра и нажмите на кнопку **Обуче**ние;

Кнопка Удалить последний служит для удаления последнего отобранного образца, кнопка Удалить все служит для удаления всех отобранных образцов.
😎 Фильтр по характкристикам изображения		
Параметры		
Полуразмер маски 50		
Обучение		188
Обучение Число образцов 2	Удалить все	~
Тест	Удалить последний	1 PK
Чувствительность 15	Сохранить	
	Загрузить	1_1_
Слой с исходной матрицей		
dem2_cut (Матрица высот)		1
Сохранить результат в		
/Techsupport/Waldkirch_Group/Waldkirch_for_contours		
Фильтровать Рас	спределенная обработка	t

Рис. 132. Отбор характерных участков растра

- Повторите действия описанные в пункте 2 несколько раз, меняя позицию маркера;
 - Для проверки обучения наведите маркер на область растра, отличающуюся от эталонной (или наоборот - схожую с ней), и нажмите на кнопку **Тест**. Результаты «-» или «+» в строке состояния сигнализируют о совпадении или несовпадении характеристик тестируемого участка с полученными в процессе обучения эталонами.
- 7. В разделе **Сохранить результат в...** нажмите на кнопку ... и определите имя и папку для хранения выходной матрицы высот в ресурсах активного профиля;
- 8. Нажмите кнопку **Фильтровать**. После выполнения процессе фильтрации выходная матрица высот сохраняется в ресурсах активного профиля.

Рис. 133. Матрица высот после фильтрации по характеристикам изображения

Для того чтобы использовать распределенные вычисления при нарезке матрицы высот на листы, выполните следующие действия:

- 1. Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»);
- 2. Нажмите на кнопку **Распределенная обработка**. Открывается окно настройки параметров распределенной обработки;

😝 Ввод значения	×
Задайте количество задач	
þ	×
ОК	Отмена

Рис. 134. Параметры распределенной обработки

- 3. Задайте количество задач. Рекомендуется задавать Количество задач из расчета одна задача на один компьютер.
- 4. Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.5. Преобразование координат матрицы высот

7.5.1. Транспонирование матрицы высот

В системе предусмотрена возможность преобразования матрицы высот из левой системы координат в правую и наоборот. Для этого служит пункт меню **ЦМР > Матрицы высот > Транспонировать**. При таком преобразовании меняются местами строки и столбы матрицы высот.

Эта функция используется, например, при неправильно заданных координатах векторных объектов (см. раздел «*Преобразование координат объектов*» руководства пользователя «Векторизация»).

7.5.2. Преобразование системы координат матрицы высот

В системе предусмотрена возможность преобразования матрицы высот в другую систему координат.

Для преобразования матрицы высот в другую систему координат выполните следующие действия:

 Выберите ЦМР > Матрицы высот > Преобразовать в другую систему координат. Открывается окно Преобразование матрицы высот в другую систему координат.

💂 Преобразование матрицы высот в другую систему координат
Входная матрица высот
/Techsupport/Waldkirch_Group/Waldkirch_docs/Data/dem/by_pickets.x-dem
Выходная матрица высот
/Techsupport/Waldkirch_Group/Waldkirch_docs/Data/dem/by_pickets_trans_coords.x-dem
,
Исходная система координат
WGS 84 / UTM zone 555 (144deg East to 150deg East; southern hemisphere. Australi Выбрать 🚇 👻
Ориентация осей: правая тройка, геод. привязка: глобальная система координат
Выходная система координат
WGS 84 (WGS 84 Lat/Lon) Выбрать 🚇 🝷
Ориентация осей: левая тройка, геод. привязка: глобальная система координат
Границы
Север 260726.055530436
Запад Размер ячейки Восток
735901.580099013
KOr 257296.055530436
Рассчитать параметры по существующей матрице высот
Высота: 3430.000 (344 узлов)
Ширина: 2480.000 (249 узлов)
Открыть выходную матрицу высот ОК Распределенная обработка Отмена

Рис. 135. Преобразование матрицы высот в другую систему координат

- 2. Нажмите на кнопку ____ в поле Входная матрица высот и определите исходный файл матрицы высот в ресурсах активного профиля.
- 3. Нажмите на кнопку ____ в поле **Выходная матрица высот** и определите имя и папку для выходного файла матрицы высот в ресурсах активного профиля.
- В разделе Исходная система координат выберите реальную систему координат матрицы (если она отличается от СК проекта). Для этого выполните следующие действия:
 - 1) Нажмите на кнопку Выбрать..., чтобы задать исходную систему координат.

Система координат задается одним из следующих способов:

• Из БД — из международной и российской баз данных систем координат (см. *«Базы данных систем координат»* в руководстве пользователя «Создание проекта»);

- Пункты меню Из БД UTM, CK-42 и CK-95 предназначены для быстрого доступа к соответствующим системам координат, минуя общие списки международной и российской баз данных.
- Из файла позволяет выбрать систему координат из файлов с расширением x-ref-system, размещенных вне ресурсов активного профиля;
- Из ресурса из файлов с расширением x-ref-system, размещенных в ресурсах активного профиля, например, для выбора системы координат из другого проекта активного профиля.

Также в системе предусмотрена возможность выбора системы координат из списка последних использованных систем координат.

2) [опционально] При выборе системы координат из баз данных открывается окно База систем координат со списком систем координат.

Для быстрого поиска системы координат введите частично или полностью название системы координат в поле ввода **Поиск**.

🕏 База	систем координат international		l ×
Поиск		×	
N₽	Название	Примечание	
1	Cartesian Left	Left Cartesian reference system	
2	Cartesian Right	Local right Cartesian reference system	
3	Local Curved Left	Local left Cartesian reference system which takes into account Earth curvature	
4	Local Curved Right	Local right Cartesian reference system which takes into account Earth curvature	
5	Abidjan 1987 / UTM zone 29N	Cote D'Ivoire (Ivory Coast) west of 6 deg West. IGN Paris EPSG Supersedes Locodjo 65 / UTM 29N (EPSG code 242).	
6	Abidjan 1987 / UTM zone 30N	Cote D'Ivoire (Ivory Coast) east of 6 deg West. IGN Paris EPSG Supersedes Locodjo 65 / UTM 30N (EPSG code 240).	
7	Abidjan 1987	Cote D'Ivoire (Ivory Coast). IGN Paris EPSG Supersedes Locodjo 1967 (EPSG code 4142).	
8	Adindan / UTM zone 37N	Ethiopia - west of 42 degrees East. Sudan - west of 42 degrees East. EPSG	
9	Adindan / UTM zone 38N	Ethiopia - east of 42 degrees East. Sudan - east of 42 degrees East. EPSG	
10	Adindan	Ethiopia; Sudan EPSG	
11	Afgooye / UTM zone 38N	Somalia - west of 48 degrees East. EPSG	
12	Afgooye / UTM zone 39N	Somalia - east of 48 degrees East. EPSG	
13	Afgooye	Somalia EPSG	
14	Agadez	Niger EPSG	
15	AGD66 / AMG zone 48	Australia - 102deg East to 108deg East. EPSG	
16	AGD66 / AMG zone 49	Australia - 108deg East to 114deg East. EP5G	-
		ОК Отмена	

Рис. 136. Окно выбора системы координат из базы систем координат

- [опционально] Чтобы выбрать используемый геоид, нажмите на кнопку
 Выберите один из видов использования геоида:
 - Без геоида;
 - EGM 96.

В системе существует возможность использования геоида EGM2008. Подробнее см. в руководстве пользователя «Поддержка геоида EGM2008«. После установки геоид отображается в списке.

Система координат				
WGS 84 / UTM zone 35N (24deg	East to 30deg East; northern he	misphere. Belarus. Bulgaria. ⊂	Выбрать	▶ -
Ориентация осей: правая тро	йка, геод. привязка: глобальна	ая система координат		Без геоида
Jebuerre er				EGM 2008
F •				EGM 96
Высота местности	min j m	max j m	-	

- 5. В разделе **Выходная система координат** укажите систему координат в которую необходимо преобразовать матрицу высот. Для этого выполните действия пункта **4**.
- 6. Задайте границы матрицы высот в поля **Север**, **Запад**, **Восток**, **Юг**. В полях **Высота** и **Ширина** отображаются рассчитанные размеры границы матрицы в метрах, а также количество узлов матрицы высот.
- 7. Задайте **Размер ячейки** в метрах для изменения размера элемента выходной матрицы.
- [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.

- [опционально] Чтобы открыть выходную матрицу высот после пересчета системы координат, по умолчанию установлен флажок Открыть выходную матрицу высот. Снимите флажок, чтобы не загружать в проект созданный файл.
- 10. Нажмите ОК для изменения системы координат матрицы высот.

Чтобы использовать распределенные вычисления при изменении системы координат матрицы высот выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка.... Открывается окно Распределенный пересчет матрицы высот.

🐥 Распределенный пересчет матрицы	ы высот 📃 🗖 🗙
Количество фрагментов матрицы высот:	1
Количество фрагментов на одну задачу:	1 3
Временная папка для распределенной обра	ботки:
/Techsupport/Waldkirch_Group/Waldkirch_do	cs/Temp/
Выходной ресурс с матрицей высот:	
/Techsupport/Waldkirch_Group/Waldkirch/Dal	:a/dem/test_DIF_trans_coords.x-(
	ОК Отмена

Рис. 137. Распределенный пересчет матрицы высот

- 3) Количество фрагментов матрицы высот, на которые она делится при распределенной обработке, рассчитывается автоматически и зависит от размеров матрицы. Рекомендуется задавать Количество фрагментов на одну задачу из расчета одной задачи на один компьютер.
- 4) Определите **Временную папку для распределенной обработки** для хранения временных файлов.
- 5) Задайте имя и путь для выходного файла в ресурсах активного профиля.
- 6) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.5.3. Перестраивание матрицы высот с учетом последнего уравнивания

В системе предусмотрена возможность перестраивания матрицы высот с учетом последнего уравнивания (например, если после построения матрицы высот было выполнено повторное уравнивание в копии проекта).

Для этого выполните следующее:

 Выберите ЦМР > Матрицы высот > Перестраивание матрицы высот с учетом последнего уравнивания. Открывается окно Перестраивание матрицы высот с учетом последнего уравнивания.

Входной ресу	/pc			
/Techsuppo	ort/Lite/Aerial_Surv	ey RC20/Data/dem/dem_2.5m.x-de	:m	
Выходной ре	сурс			
/Techsuppo	ort/Lite/Aerial_Surv	ey RC20/Data/dem/dem_2.5m_tran	s_coords.x-dem	
lpoeкт с пре д /Techsupport	ыдущим уравнива /Lite/Aerial Survey	анием RC20/		
Границы	, <u>enc</u> , nenal_sancy			
		Север		
		4970815.21566688		
Запад		Размер ячейки	Восток	
6442894.2	9517769 🚖	2.5	6444509.29517769	
		Юг		
		4969615 21566688		
		4505015.21500000 v		
Рассчитат	ь параметры по су	ществующей матрице высот		
Ширина 1	615.000 (647 узлов))		
Высота 1	200.000 (481 узлов))		

Рис. 138. Окно «Перестраивание матрицы высот с учетом последнего уравнивания»

- 2. Нажмите на кнопку ____ в поле **Входной ресурс** и определите исходный файл матрицы высот в ресурсах активного профиля.
- 3. Нажмите на кнопку в поле **Выходной ресурс** и определите имя и папку для выходного файла матрицы высот в ресурсах активного профиля.

- 4. Нажмите на кнопку в поле **Проект с предыдущим уравниванием** и выберите проект с предыдущим уравниванием в окне **Проекты PHOTOMOD**.
- 5. Задайте границы матрицы высот в поля **Север**, **Запад**, **Восток**, **Юг**. В полях **Высота** и **Ширина** отображаются рассчитанные размеры границы матрицы в метрах, а также количество узлов матрицы высот.
- 6. Задайте **Размер ячейки** в метрах для изменения размера элемента выходной матрицы.
- [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.
- 8. [опционально] Чтобы открыть выходную матрицу высот после перестраивания, по умолчанию установлен флажок **Открыть выходную матрицу высот**. Снимите флажок, чтобы не загружать в проект созданный файл.
- 9. Нажмите ОК для перестраивания матрицы высот.

Чтобы использовать распределенные вычисления при изменении матрицы высот выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка.... Открывается окно Распределенный пересчет матрицы высот.

🚔 Распределенный пересчет матриць	ы высот 📃 🗖 🗙
Количество фрагментов матрицы высот:	1
Количество фрагментов на одну задачу:	1
Временная папка для распределенной обра	ботки:
/Techsupport/Waldkirch_Group/Waldkirch_do	:s/Temp/
Выходной ресурс с матрицей высот:	
/Techsupport/Waldkirch_Group/Waldkirch/Dal	:a/dem/test_DIF_trans_coords.x-i
	ОК Отмена

Рис. 139. Распределенный пересчет матрицы высот

3) Количество фрагментов матрицы высот, на которые она делится при распределенной обработке, рассчитывается автоматически и зависит от

размеров матрицы. Рекомендуется задавать **Количество фрагментов** на одну задачу из расчета одной задачи на один компьютер.

- 4) Определите **Временную папку для распределенной обработки** для хранения временных файлов.
- 5) Задайте имя и путь для выходного файла в ресурсах активного профиля.
- 6) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.6. Пустые ячейки в матрице высот

7.6.1. Общие сведения

При автоматическом построении регулярной модели рельефа (матрицы высот) часть ячеек может быть не определена. Такие ячейки матрицы высот («дырки»), высота в которых неизвестна, называются пустыми ячейками.

В системе предусмотрена возможность восстановления пустых ячеек матрицы высот следующими методами заполнения пустых ячеек:

- метод линейной интерполяции (см. раздел 7.6.2);
- метод гладкой интерполяции (см. раздел 7.6.3);
- метод «ближайшего значения» (см. раздел 7.6.4);
- заполнение постоянным значением (см. раздел 7.6.5).
- заполнение минимальным значением (см. раздел 7.6.6).

Также в системе предусмотрено преобразование ячеек матрицы высот с заданной высотой в пустые ячейки.

Заполнение пустых ячеек матрицы высот также может быть использовано для изменения размера ячейки исходной матрицы высот.

7.6.2. Заполнение пустых ячеек с помощью линейной интерполяции

В системе предусмотрена возможность заполнения пустых ячеек матрицы высот методом линейной интерполяции. Заполнение пустых ячеек данным методом происходит с помощью построения TIN по матрице высот и вычисления высот пустых ячеек методом линейной интерполяции по построенной TIN. При применении данного метода существует возможность изменения границ и размера ячейки матрицы высот, а также удаление «острых» выбросов TIN.

Для заполнения пустых ячеек матрицы высот методом линейной интерполяции выполните следующие действия:

1. Выберите ЦМР · Матрицы высот · Заполнить пустые ячейки · Линейная интерполяция.... Открывается окно Параметры заполнения пустых ячеек методом линейной интерполяции.

wodition b	есурс				
ipport/W	/aldkirch_Group/V	Waldkirch_Tolic/Data/	/dem2/fi	nal.x-dem	
Выходной	ресурс				
/Techsu	pport/Waldkirch_	Group/Waldkirch_Tol	ic/Data/o	dem2/final	
Границы					
		Север			
		260378.0	· · · · · · · · · · · · · · · · · · ·		
Запад		Размер ячейки		Восток	
736313	3.0	1.0		737274.0	-
		Юг			
		250107.0	-		
		259107.0	×		
Рассчи	тать параметры г	259107.0	атрице в	ысот	
Рассчи	тать параметры г	259107.0 по существующей м	атрице в	ысот	
Рассчит Ширина	тать параметры г 961.000 (962 узл	259107.0 по существующей м пов)	атрице в	ысот	
Рассчит Ширина Высота	тать параметры п 961.000 (962 узл 1271.000 (1272 у	259107.0 по существующей м пов) узлов)	атрице в	ысот	
Рассчит Ширина Высота	тать параметры п 961.000 (962 уз/ 1271.000 (1272 у	259107.0 по существующей м пов) узлов)	атрице в	ысот	
Рассчит Ширина Высота	тать параметры г 961.000 (962 уз) 1271.000 (1272 у	259107.0 по существующей м пов) узлов) Граница матриць	атрице в	ысот	
Рассчит Ширина Высота Взять из в	тать параметры п 961.000 (962 уз/ 1271.000 (1272 у векторного слоя	259107.0 по существующей м пов) узлов) Граница матриць	атрице в	ысот	
Рассчит Ширина Высота Взять из в	тать параметры г 961.000 (962 узл 1271.000 (1272 у векторного слоя	259107.0 по существующей м пов) узлов) Граница матриць	атрице в	ысот	
Рассчит Ширина Высота Взять из в	тать параметры п 961.000 (962 уз/ 1271.000 (1272 у векторного слоя	259107.0 по существующей м пов) узлов) Граница матриць	атрице в	ысот	
Рассчит Ширина Высота Взять из в	тать параметры г 961.000 (962 узл 1271.000 (1272 у векторного слоя	259107.0 по существующей м пов) узлов) Граница матриць	атрице в	ысот	
Рассчит Ширина Высота Взять из в	тать параметры п 961.000 (962 уз/ 1271.000 (1272 у векторного слоя	259107.0 по существующей м пов) узлов) Граница матриць	атрице в	ысот	

Рис. 140. Параметры заполнения пустых ячеек методом линейной интерполяции

2. В разделе **Входной ресурс** нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

По умолчанию для выходной матрицы высот предлагается имя <*имя еходной матрицы*>_*corr.x-dem* и размещение в папке, содержащей файл входной матрицы.

- 4. В разделе **Границы** задайте границы матрицы высот в поля **Север**, **Запад**, **Восток**, **Юг**. В полях **Высота** и **Ширина** отображаются рассчитанные размеры границы матрицы в метрах, а также количество узлов матрицы высот.
- 5. Задайте **Размер ячейки** в метрах для изменения размера ячейки выходной матрицы.
- [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.
- 7. [опционально] В разделе **Границы** установите флажок **Взять из векторного слоя** для того чтобы задать границы выходной матрицы высот при помощи векторного полигона.

Необходимо заранее создать векторный слой с одним полигоном, задающим границы выходной матрицы высот.

Выберите один векторный слой, содержащий ограничивающий матрицу высот полигон, из открывшегося списка загруженных векторных слоев;

- 8. [опционально] В разделе **Границы** установите флажок **Построить** для того чтобы построить границы выходной матрицы высот в автоматическом режиме;
- 9. [опционально] Для удаления данных обработки после завершения вычислений установите флажок **Удалить промежуточные данные**;

🜻 Параметры		
Длина ребра:	5.0	1∕₄ м
Отклонение по высоте вверх более чем	5.0	м
	ОК	Отмена

Рис. 141. Параметры удаления выбросов

Введите следующие параметры удаления выбросов:

- Длина ребра позволяет задать максимальную длину ребра в ячейке TIN (в метрах);
- Отклонение по высоте вверх более чем позволяет задать максимальное отклонение вершины по высоте вверх от соседних (в метрах).
- Нажмите ОК. Запускается процесс вычисления высот пустых ячеек методом линейной интерполяции. В результате создается новый слой матрицы высот в Диспетчере слоев и выдается сообщение об успешном/неуспешном завершении процесса.

7.6.3. Заполнение пустых ячеек методом гладкой интерполяции

В системе предусмотрена возможность заполнения пустых ячеек матрицы высот методом гладкой интерполяции. При применении метода гладкой интерполяции происходит вычисление коэффициента прореживания входной матрицы высот для получения вспомогательной матрицы высот. По вспомогательной матрице высот рассчитываются значения высот для пустых ячеек, при этом заполненные высоты ячеек входной матрицы высот не пересчитываются. Границы и размер ячеек выходной матрицы полностью соответствуют границе и размерам ячеек входной матрицы.

Данный метод рекомендуется при достаточно плотной матрице высот.

Для заполнения пустых ячеек матрицы высот методом гладкой интерполяции выполните следующие действия:

1. Выберите ЦМР > Матрицы высот > Заполнить пустые ячейки > Гладкая интерполяция.... Открывается окно Параметры заполнения пустых ячеек методом гладкой интерполяции.

😎 Параметры заполнения пустых ячеек методом гладкой интерполяции
Входная матрица высот
/Techsupport/Waldkirch_Group/Waldkirch/Data/dem/1m_filtered_filtered_corr_corr.x-dem
Выходная матрица высот
/Techsupport/Waldkirch_Group/Waldkirch/Data/dem/1m_filtered_filtered_corr_corr_filled.x-
Размер пикселя на местности 1.00 м
Коэффициент прореживания для получения вспомогательной матрицы 7 👘
Размер пикселя вспомогательной матрицы 6.97 м
Граница матрицы высот
🔄 Взять из векторного слоя
Векторы
-
Удаление временных данных
ОК Отмена

Рис. 142. Параметры заполнения пустых ячеек методом гладкой интерполяции

В окне отображается Размер пикселя на местности входной матрицы высот в метрах.

2. В разделе **Входная матрица высот** нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

По умолчанию для выходной матрицы высот предлагается имя <*имя входной матрицы>_filled.x-dem* и размещение в папке, содержащей файл входной матрицы.

- 4. Введите Коэффициент прореживания для получения вспомогательной матрицы. При этом Размер пикселя вспомогательной матрицы рассчитывается автоматически.
- 5. [опционально] В разделе **Границы матрицы высот** установите флажок **Взять** из векторного слоя для того чтобы задать границы выходной матрицы высот при помощи векторного полигона.

Необходимо заранее создать векторный слой с *одним* полигоном, задающим границы выходной матрицы высот.

Выберите один векторный слой, содержащий ограничивающий матрицу высот полигон, из открывшегося списка загруженных векторных слоев;

- [опционально] В разделе Границы матрицы высот установите флажок Построить для того чтобы построить границы выходной матрицы высот в автоматическом режиме;
- 7. [опционально] Для удаления данных обработки после завершения вычислений установите флажок **Удалить промежуточные данные**;
- 8. Нажмите ОК. Запускается процесс вычисления высот пустых ячеек методом гладкой интерполяции. В результате создается новый слой матрицы высот в *Диспетчере слоев*.

7.6.4. Заполнение пустых ячеек ближайшим значением

Метод заполнения пустых ячеек ближайшим значением основан на анализе значений ячеек, окружающих пустую область матрицы высот. Операция позволяет заполнять пустые ячейки матрицы высот ближайшим либо средним значением непустых ячеек по заданной окрестности. Выходная матрица либо совпадает по габаритам и размерам с исходной, либо является прореженной исходной матрицей со степенью прореживания, кратной 2 (в зависимости от значения параметра **Уровень обрабатываемой пирамиды**).

Для восстановления матрицы высот с пустыми ячейками данным методом выполните следующие действия:

 Выберите ЦМР > Матрицы высот > Заполнить пустые ячейки > Ближайшим значением.... Открывается окно Параметры заполнения пустых ячеек ближайшим значением.

😔 Параметры заполнения пустых ячее	к ближайшим значением	×
Входной ресурс		
/Techsupport/Waldkirch_Group/Wald	lkirch/Data/dem/1m_filtered_filtered_corr.x-dem	
Выходной ресурс		
/Techsupport/Waldkirch_Group/Wald	lkirch/Data/dem/1m_filtered_filtered_corr_corr.x-dem	
Предварительная обработка		
Размер апертуры: 5	×	
Основная обработка		
Размер апертуры: 100	×	
📝 Интерполировать отсчеты		
Уровень обрабатываемой пирамиды:	0	
	Граница матрицы высот	
🔲 Взять из векторного слоя		
		*
		~
Построить		
📝 Удаление временных данных		
	OK	Отмена

Рис. 143. Параметры восстановления пустых ячеек матрицы высот

2. В разделе **Входная матрица высот** нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

3. Задайте путь для Выходной матрицы высот в ресурсах активного профиля.

По умолчанию для выходной матрицы высот предлагается имя *<имя входной мат*рицы>_corr.x-dem и размещение в папке, содержащей файл входной матрицы.

- [опционально] Предварительная обработка необязательный этап, который позволяет заполнить небольшие области пустых ячеек (размером менее заданной окрестности). Применяется к основному слою исходной матрицы высот.
- 5. [опционально] Если предварительная обработка выполняется, задайте **Размер** апертуры. Он определяет размер окрестности, в пределах которой ищутся

значения высоты для заполнения пустых ячеек. Рекомендуемые размеры апертуры — 3-10.

- Основной этап осуществляется на выбранном уровне пирамиды выходной матрицы высот. В разделе Основная обработка задайте следующие параметры основного этапа:
 - Размер апертуры определяет размер окрестности, в пределах которой ищутся значения высоты для заполнения пустых ячеек. Необходимое значение зависит от размеров скоплений пустых ячеек на исходной матрице высот и уровня используемой пирамиды.
 - Л З

Рекомендуется задавать значение апертуры в несколько раз больше, чем на предварительном этапе.

- Интерполировать отсчеты при установленном флажке пустая ячейка заполняется средним значением высот по заданной окрестности, иначе ближайшим (в геометрическом смысле) значением высоты по заданной окрестности.
 - Для вычисления среднего значения высот используется билинейная интерполяция. Это позволяет повысить качество выходной матрицы высот, но время обработки увеличивается.
- Уровень обрабатываемой пирамиды позволяет выбрать уровень пирамиды исходной матрицы высот, по которому создается выходная матрица высот. Если исходная матрица является слишком подробной, выберите уровень пирамиды больше 0 для использования прореженного изображения.
- [опционально] В разделе Границы матрицы высот установите флажок Взять из векторного слоя для того чтобы задать границы выходной матрицы высот при помощи векторного полигона.

Необходимо заранее создать векторный слой с *одним* полигоном, задающим границы
 выходной матрицы высот.

Выберите один векторный слой, содержащий ограничивающий матрицу высот полигон, из открывшегося списка загруженных векторных слоев;

- [опционально] В разделе Границы матрицы высот установите флажок Построить для того чтобы построить границы выходной матрицы высот в автоматическом режиме;
- 9. [опционально] Для удаления данных обработки после завершения вычислений установите флажок **Удалить промежуточные данные**;

10. Нажмите ОК. Пустые ячейки матрицы высот заполняются в соответствии с заданными параметрами.

7.6.5. Заполнение пустых ячеек постоянным значением

В системе предусмотрена возможность заполнения пустых ячеек матрицы высот постоянным значением.

Для заполнения пустых ячеек матрицы высот постоянным значением выполните следующие действия:

 Выберите ЦМР > Матрицы высот > Заполнить пустые ячейки > Постоянным значением.... Открывается окно Параметры заполнения пустых ячеек постоянным значением.

😔 Параметры заполнения пустых ячеек постоянным значением
Входной ресурс
up/Waldkirch/Data/dem/1m_filtered_filtered_corr.x-dem
Выходной ресурс
/Techsupport/Waldkirch_Group/Waldkirch/Data/dem/1n
2
с
I раница матрицы высот
🔲 Взять из векторного слоя
-
Построить
🗹 Удаление временных данных
ОК Отмена

Рис. 144. Параметры заполнения пустых ячеек матрицы высот постоянным значением

2. В разделе Входная матрица высот нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

По умолчанию для выходной матрицы высот предлагается имя *<имя входной матрицы>_filled.x-dem* и размещение в папке, содержащей файл входной матрицы.

- 4. Введите Значение для заполнения пустых ячеек.
- 5. [опционально] В разделе **Границы матрицы высот** установите флажок **Взять** из векторного слоя для того чтобы задать границы выходной матрицы высот при помощи векторного полигона.

Необходимо заранее создать векторный слой с *одним* полигоном, задающим границы
 выходной матрицы высот.

Выберите один векторный слой, содержащий ограничивающий матрицу высот полигон, из открывшегося списка загруженных векторных слоев;

- [опционально] В разделе Границы матрицы высот установите флажок Построить для того чтобы построить границы выходной матрицы высот в автоматическом режиме;
- 7. [опционально] Для удаления данных обработки после завершения вычислений установите флажок **Удалить промежуточные данные**;
- 8. Нажмите ОК. Запускается процесс заполнения пустых ячеек. Затем выдается сообщение о количестве измененных ячеек и создается новый слой матрицы высот в *Диспетчере слоев*.

7.6.6. Заполнение пустых ячеек минимальными значениями

В системе предусмотрена возможность заполнения пустых ячеек матрицы высот минимальными значениями.

Так же система позволяет заполнить пустые области в true ortho, созданном одновременно с матрицей высот.

Метод заполнения пустых ячеек минимальным значением основан на анализе значений ячеек, окружающих пустую область матрицы высот. Особенностью данного метода является возможность исключить близлежащие здания из процесса интерполяции пустых областей матрицы высот (см. иллюстрацию, пункт **11**).

Для заполнения пустых ячеек матрицы высот минимальными значениями выполните следующие действия:

1. Выберите ЦМР > Матрицы высот > Заполнить пустые ячейки > Минимальными значениями.... Открывается окно Заполнение пустых ячеек:

ЦМР		
Входной ресурс		
Выходной ресурс		
Минимальная высота зд	ания 2.0 🖵 м	
Размер кэша при запол	нении 1500 🚔 Мб	
📝 Заполнять единичны	е пустые ячейки	
True Ortho		
🔽 Заполнять пустые яч	ейки	
Входной ресурс		
Выходной ресурс		
🔽 Перезаписывать знач	ащие ячейки	
Интерполировать нез	заполненные пустые ячейки	
📝 Заполнять единичны	е пустые ячейки	
Радиус оценки видимос	ти	100.0 🚔 M
Шаг оценки видимости		1.0 A
		16
максимальное количес	тво изооражении на пиксель	10
Фильтровать выброс	ы	
Размер апертуры 3	×	
Порог фильтрации 10	×	
🗸 Перезаписывать суще	ствующие ЦМР/True Ortho	

Рис. 145. Параметры заполнения пустых ячеек матрицы высот минимальными значениями

- 2. В разделе **ЦМР** нажмите на кнопку ____ для выбора *исходной матрицы высот* в ресурсах активного профиля;
- 3. [опционально] Чтобы определить имя и папку хранения *выходной матрицы высот* в ресурсах активного профиля, нажмите на кнопку;
- В разделе ЦМР задайте параметр Минимальная высота здания в метрах, для того чтобы исключить здания из процесса интерполяции пустых областей матрицы высот;
- В разделе ЦМР задайте параметр Размер кеша при заполнении в мегабайтах — максимальный размер памяти, выделяемый под одну задачу при построении true ortho;

- [опционально] снимите флажок Заполнять единичные пустые ячейки в разделе ЦМР, для того чтобы не интерполировать единичные пустые ячейки в матрице высот;
- 7. [опционально] снимите флажок Заполнять пустые ячейки разделе True Ortho для того чтобы не заполнять пустые области в ортофотоплане;
- 8. В разделе **True Ortho** нажмите на кнопку ____ для выбора *ucxodнoгo true ortho* в ресурсах активного профиля;

Для корректной работы функции выбранный ортофотоплан должен быть создан одновременно с выбранной в шаге **2** матрицей высот, совпадая с ней по границам.

- 9. [опционально] Чтобы определить имя и папку хранения выходного true ortho в ресурсах активного профиля, нажмите на кнопку;
- 10. [опционально] настройте следующие параметры заполнения пустых областей в true ortho:
 - Перезаписывать значащие ячейки позволяет исключить изолированные области матрицы высот из процесса интерполяции незаполненных областей ортофотоплана;

Изолированные области матрицы высот — области со значениями, находящиеся вне основной матрицы высот или среди пустых ячеек.

- Интерполировать незаполненные пустые ячейки позволяет интерполировать незаполненные области ортофотоплана;
- Заполнять единичные пустые ячейки позволяет интерполировать области без данных размером в один пиксель на ортофотоплане;
- Радиус оценки видимости расстояние, в пределах которого на снимках проекта производится проверка видимости точек, расположенных в незаполненных областях ортофотоплана;
- Шаг оценки видимости шаг, с которым на снимках проекта производится проверка видимости точек, расположенных в незаполненных областях ортофотоплана;
- Максимальное количество изображений на пиксель максимальное количество снимков проекта, на которых производится проверка видимости точек, расположенных в незаполненных областях ортофотоплана;
- Фильтровать выбросы позволяет выполнить медианную фильтрацию ортофотоплана с заданным Порогом фильтрации. Статистика собирается

в окрестности, площадь которой определяется **Размером апертуры**. Данный фильтр предназначен для удаления одиночных пикселей с неестественной яркостью.

11. [опционально] установите флажок **Перезаписывать существующие ЦМР/True Ortho** для того чтобы не использовать данные, находящиеся в рабочей папке и перезаписать их.

Рис. 146. Пример незаполненной области на true ortho, где: а — высота здания (см. параметр Минимальная высота здания), b — изолированные ячейки, расположенные в незаполненной области матрицы высот (см. флажок Перезаписывать значащие ячейки), с — Шаг оценки видимости, R — Радиус оценки видимости, S — незаполненная область на матрице высот/ортофотоплане (обусловленная тем, что снимок является центральной проекцией местности и объекты, возвышающиеся над поверхностью земли, закрывают часть местности, которая не изображается на снимке).

12. Нажмите ОК. Запускается процесс заполнения пустых ячеек. Затем выдается сообщение о количестве измененных ячеек и создается новый слой матрицы высот в Диспетчере слоев.

Чтобы выполнить заполнение пустых ячеек с использованием распределенной обработки, выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка. Открывается окно Распределенный пересчет матрицы высот.

😔 Распределенный пересчет матрицы вы	КОТ
Количество фрагментов матрицы высот	1
Количество фрагментов на одну задачу	1
Временная папка для распределенной об	работки
/Techsupport/Waldkirch_Group/Waldkirch	h_SAW/Temp/
	ОК Отмена

Рис. 147. Параметры расределенного пересчета матрицы высот

- 3) Количество фрагментов матрицы высот, на которые она делится при распределенной обработке, рассчитывается автоматически и зависит от размеров матрицы. Рекомендуется задавать Количество фрагментов на одну задачу из расчета одной задачи на один компьютер.
- 4) Определите **Временную папку для распределенной обработки** для хранения временных файлов.
- 5) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.6.7. Преобразование ячеек в пустые

В системе предусмотрена возможность преобразования ячеек матрицы с заданной высотой в пустые ячейки.

Данный способ рекомендуется применять при наличии ошибок после импорта матрицы высот.

Для преобразования ячеек в пустые ячейки выполните следующие действия:

1. Выберите **ЦМР > Матрицы высот > Преобразовать в пустые ячейки...**. Открывается окно **Параметры преобразования в пустые ячейки**.

😎 Параметры прес	бразования і	в пуст	ые ячейки	1	X
Входная матрица	высот				
kirch_Group/Wa	dkirch/Data/o	lem/1	m.x-dem		
Выходная матриц	а высот				
/Techsupport/W	aldkirch_Grou	p/Wal	dkirch/Da		
Ячейки, содержащи	ie Z				
💿 внутри диапазо	на 🔘 вне ди	апазоі	на		
будут преобразован	ы в пустые:				
Zmin	529.638	* *	м		
Zmax	671.232	* *	м		
			ОК	Οπ	мена

Рис. 148. Параметры преобразования ячеек матрицы высот в пустые ячейки

2. В разделе **Входная матрица высот** нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

По умолчанию для выходной матрицы высот предлагается имя *<имя входной матрицы>_corr.x-dem* и размещение в папке, содержащей файл входной матрицы.

4. Задайте диапазон ячеек матрицы высот для преобразования в пустые в полях **Zmin** и **Zmax** в метрах.

Система позволяет преобразовать ячейки матрицы находящиеся как внутри диапазона так и вне диапазона.

5. Нажмите ОК. В результате все ячейки выходной матрицы высот, высота которых попадает в указанный Z-диапазон, преобразуются в пустые ячейки.

7.7. Редактирование матрицы высот

7.7.1. Объединение матриц высот

В системе предусмотрена возможность сшивки (объединения) соседних матриц высот, имеющих перекрытие.

Для сшивки соседних матриц высот выполните следующие действия:

1. Выберите ЦМР > Матрицы высот > Сшить матрицы высот.... Открывается окно Сшивка матриц высот — Шаг 1 из 2: Исходные данные.

😞 Сшивка матриц высот Иас 1 из 2: Исходина, дани	-19			
	d coords coords_filed coords_filered		1m_trans_coords.x-dem dem-tin.x-dem	
Имя 🗸	Размер 🔺			
0.x-dem	1.10 КБ			
1m.x-dem	915 5			
1m_filtered.x-dem	1.11 КБ			
1m_trans_coords.x-dem	1.12 КБ	السنية		
1m_trans_coords_filled.x	1.12 KB	>>		
1m_trans_coords_filtered	1.12 КБ			
dem-tin.x-dem	963 5	<		
dem-tin_corr.x-dem	968 E			
Dense_Dem_filtered.x-dem	3.90 KB	<<		
Dense_Dem_filtered_corr	4.15 KB 💌			
•	Þ			
			< Назад Далее 3	> Отмена

Рис. 149. Выбор матриц высот для сшивки

- 2. В дереве ресурсов выберите папку с матрицей высот.
 - Кнопка : позволяет отобразить все доступные ресурсы во вложенных файлах.
 Кнопка : позволяет обновить часть окна с ресурсами.

Кнопка 🔽 позволяет отобразить список из 10 последних выбранных ресурсов.

3. В списке выберите матрицу высот, имеющей перекрытие с соседней и нажмите на кнопку >, чтобы добавить матрицу высот к объединению.

Кнопки >> и << позволяют добавить/удалить из списка все добавленные матрицы высот, кнопка > позволяет убрать из списка выделенную матрицу высот.

4. Повторите действия 2-3 для добавления последующих матриц высот.

Для сшивки необходимо выбрать как минимум два файла с матрицами высот, имеющими перекрытие.

5. Нажмите на кнопку Далее. Открывается окно Сшивка матриц высот — Шаг 2 из 2: Параметры.

Параметр			
ai 2 из 2; i i	араметры		
Границы			
		Север	
		260616.914	
Запад		Размер ячейки	Восток
736102	2.237	1.0	738184.237
		Юг	
		257388.914	
Рассчит	тать параметры по суц	цествующей матрице высот	
Ширина	2082.000 (2083 узлов)		
Высота	3228.000 (3229 узлов)		
В области	перекрытия использо	вать	
🖲 Верхнюю	ю матрицу 💿 🛛	Нижнюю матрицу 💿 Средне	е значение 💿 Средневесовое значение
Открыть	выходную матрицу вы	ICOT	
_ onepone	солодную матрицу вв	-	
Deconora	енная обработка		< Назад ОК Отмена

Рис. 150. Параметры матриц высот для сшивки

- 6. Задайте границы матрицы высот в поля **Север**, **Запад**, **Восток**, **Юг**. В полях **Высота** и **Ширина** отображаются рассчитанные размеры границы матрицы в метрах, а также количество узлов матрицы высот.
- 7. Задайте **Размер ячейки** в метрах для изменения размера элемента выходной матрицы.
- [опционально] Для вычисления параметров выходной матрицы высот из параметров существующей нажмите на кнопку Рассчитать параметры по существующей матрице высот и выберите файл с матрицей высот в ресурсах активного профиля.
- 9. В разделе **В области перекрытия использовать** задайте метод расчета значений матрицы высот, которые следует использовать в области перекрытия:

- использовать данные с *верхней матрицы* (первая или верхняя в списке матрица высот, добавленная для сшивки, в окне Сшивка матриц высот — Шаг 1 из 2: Исходные данные);
- использовать данные с нижней матрицы (вторая или нижняя в списке матрица высот, добавленная для сшивки, в окне Сшивка матриц высот — Шаг 1 из 2: Исходные данные);
- рассчитать и использовать средние значения точек матриц в области перекрытия;
- учитывать при расчете средних значений в области перекрытия оценку ошибок по высоте матриц высот, с последующей отбраковкой грубых отсчетов;

😎 Параметр	ы					×
Шаг 2 из 2: Па	араметры					
Границы						
		Север				
		260610.0	×			
Запад		Размер ячейки		Восток		
736165	.0	1.0	×	737982.0	×	
		Юг				
		257605.0	×			
Рассчит	гать параметры по суш	ествующей матрице в	ысот			
Ширина	1817.000 (1818 узлов)					
Высота	3005.000 (3006 узлов)					
-В области	перекрытия использов	ать				
🔘 Верхнюн	ю матрицу 💿 Н	Іижнюю матрицу	Среднее зна	чение	Оредневесо	вое значение
Априорная	точность матрицы выс	от по Z 1.0	▲ M			
Минимальн	ое количество отсчето	в в перекрытии 1				
 Открыть	выходную матрицу вы	сот				
Распределе	енная обработка		<	Назад	ОК	Отмена

Рис. 151. Расчет области перекрытия по средневесовому значению

Задайте следующие параметры расчета значений в области перекрытия:

• Априорная точность матрицы высот по Z;

Файлы матриц высот построенных методом SGM и не подвергнутых какой-либо последующей дополнительной обработке, содержат в себе данные априорной оценки точности.

Априорная оценка точности рассчитывается исходя из засечки стереопары по которой построена матрица высот и разрешения снимков.

Для того чтобы получить данные априорной оценки точности выберите **Сервис > Explorer**. Открывается окно **PHOTOMOD Explorer**. В левой части окна, в папке содержащей матрицу высот, откройте вложенную папку «*Temp\Dems*«, содержащую матрицы высот с расширением *.x-dem, построенные для каждой отдельной стереопары.

Рис. 152. Окно PHOTOMOD Explorer

Откройте контекстное меню щелчком правой кнопки мыши по имени файла любой из матриц высот, построенных для отдельной стереопары, в правой части окна **PHOTOMOD Explorer**. Выберите в контекстном меню пункт **Смотреть как текст**. Файл матрицы высот открывается в текстовом редакторе.

📀 /UAVprojects/doc/GeoScan_docs копия/Data/de	
👖 🖻 h 🛤	
<x n="double_params"> <x n="param"></x></x>	*
<pre><s n="name" v="apriory_accuracy"></s> <d n="val" v="2.9873863417182838e+000"></d></pre>	
	-
1378 2: 2	

Рис. 153. Файл матрицы высот открытый в текстовом редакторе

Информация об априорной оценке точности содержится после строки <s n="name" v="apriory_accuracy"/>, где v — является искомым значением: например <d n="val" v="2.9873863417182838e+000"/>.

- Минимальное количество отсчетов в перекрытии позволяет настроить надежность отсчетов в матрице высот. Данный параметр определяет минимальное количество перекрывающихся стереопар, необходимых для вычисления результирующего значения ячейки матрицы высот. При значении параметра более единицы все ячейки матрицы высот расположенные в области перекрытия *только одной* стереопары не участвуют в обработке.
- Рекомендуется использовать **Средневесовое значение** для расчета значения матрицы высот в области перекрытия, в том случае, когда производится объединение нескольких матриц высот, могущих содержать грубые ошибки.
- 10. [опционально] По умолчанию установлен флажок **Открыть выходную матрицу высот** после завершения процесса вычислений. Снимите флажок, чтобы не загружать полученную матрицу высот в проект.
- 11. Нажмите ОК для запуска процесса объединения матриц высот.

Чтобы использовать распределенные вычисления при сшивке матриц высот выполните следующие действия:

- Настройте и запустите сервер/клиент распределенной обработки (см. раздел «Распределенная обработка» руководства пользователя «Общие сведения о системе»).
- 2) Нажмите на кнопку Распределенная обработка.... Открывается окно Распределенный пересчет матрицы высот.

🌲 Распределенный пересчет матриць	і высот
Количество фрагментов матрицы высот:	1
Количество фрагментов на одну задачу:	1 3
Временная папка для распределенной обра	ботки:
/Techsupport/Waldkirch_Group/Waldkirch_doc	s/Temp/
Выходной ресурс с матрицей высот:	
/Techsupport/Waldkirch_Group/Waldkirch_doc	:s/Data/dem/by_pickets_parproc.
_	ОК Отмена

Рис. 154. Распределенный пересчет матрицы высот

- 3) Количество фрагментов матрицы высот, на которые она делится при распределенной обработке, рассчитывается автоматически и зависит от размеров матриц высот. Рекомендуется задавать Количество фрагментов на одну задачу из расчета одной задачи на один компьютер.
- 4) Определите **Временную папку для распределенной обработки** для хранения временных файлов.

- 5) Задайте имя и путь для выходного файла в ресурсах активного профиля.
- 6) Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

7.7.2. Изменение высоты фрагментов в матрице высот

В системе предусмотрена возможность выравнивания выбранного фрагмента матрицы по высоте. В этом случае всем ячейкам фрагмента матрицы, ограниченного выделенным полигоном, присваивается выбранное пользователем фиксированное значение высоты.

Чтобы выровнять фрагмент матрицы по высоте, выполните следующие действия:

- 1. Создайте векторный слой (см. руководство пользователя «Векторизация»).
- Создайте один или несколько полигонов, которые ограничивают выбранные фрагменты матрицы либо загрузите слой с полигонами для использования их в качестве границ.
- 3. Выделите не менее одного полигона, который используется в качестве границы.
- 4. Выберите ЦМР » Матрицы высот » Установить высоту в выделенных полигонах. Открывается окно Параметры присвоения высот матрицы высот в полигонах.

😞 Параметры присво	оения высоты матрицы высот в полигонах
Входная матрица вь	ісот
Group/Waldkirch	Docs/Data/dem/dem2_cut.x-dem
Выходная матрица в	зысот
/Techsupport/Wal	dkirch_Group/Waldkirch_Docs/Dat
V	
Установить для ячее	ек матрицы высот в каждом выделенном полигоне
О Среднее значение	е высоты полигона
• Постоянное значе	ение высоты
🔘 Максимальное зн	начение высоты матрицы высот в полигоне
Постоянная высота:	0.0
	ОК Отмена

Рис. 155. Параметры присвоения высот матрицы высот в полигонах

5. В разделе **Входная матрица высот** нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

По умолчанию для выходной матрицы высот предлагается имя < имя входной матрицы>_fill.x-dem и размещение в папке, содержащей файл входной матрицы.

- 7. Установите значение для ячеек матрицы высот в каждом выделенном полигоне:
 - среднее значение высоты матрицы высот в полигоне;
 - среднее значение высоты полигона;
 - постоянное значение высоты;

_ Введите **постоянное значение высоты** в метрах, в разделе **Постоянная высота**.

- максимальное значение высоты матрицы высот в полигоне.
- 8. Нажмите ОК. В результате внутри области выделенных полигонов в матрице высот присваивается установленное среднее значение высоты.

7.7.3. Сдвиг матрицы высот

В системе предусмотрена возможность сдвига всей матрицы высот по одной или нескольким осям путем параллельного переноса.

Чтобы сдвинуть матрицу высот, выполните следующие действия:

- 1. Откройте или создайте матрицу высот.
- 2. Нажмите на кнопку **ЦМР > Матрицы высот > Сдвинуть**. Открывается окно **Сдвиг матрицы высот**.

🌻 Сдвиг матрицы	высот 💶 🗖 🗙
Абсолютное смещен	ие по:
x 0.0	*↓ м
Y 0.0	%_ м
Z 0.0	м №
ОК	Отмена

Рис. 156. Параметры сдвига матрицы высот

3. Установите величину сдвига по осям в поля X, Y, Z в метрах.

Возможен сдвиг матрицы как по одной, так и по всем осям одновременно.

 Нажмите ОК. В результате с помощью параллельного переноса все точки матрицы высот активного слоя сдвигаются на заданную величину по выбранным осям.

Чтобы вернуть матрицу в исходное положение, установите значения на ноль.

7.7.4. Нарезка матрицы высот на листы

В системе предусмотрена возможность нарезки матрицы высот на листы для сохранения матрицы высот частями в отдельных файлах. Для нарезки матрицы высот на листы выполните следующие действия:

- 1. Постройте матрицу высот или выберите **ЦМР > Матрицы высот > Открыть матрицу высот** для загрузки матрицы высот из ресурсов.
- 2. Выберите **Векторы > Открыть** для загрузки ранее созданных листов или создайте полигоны листов.
- 3. Сделайте активным слой матрицы высот.
- 4. Выберите **ЦМР > Матрицы высот > Делить матрицу высот на листы**. Открывается окно **Параметры нарезки по заданному слою с полигонами**.

😔 Параметры на	арезки по заданному слою с полигонами
	Выберите слой с полигонами
Векторы	•
	•
Имя атрибута:	Name 🔹
Выходной путь:	/Techsupport/Waldkirch_Group/Waldkirch_docs/Dat
	ОК Распределенная обработка Отмена

Рис. 157. Параметры нарезки матрицы высот по заданному слою с полигонами

- 5. В списке щелчком мыши выберите слой с полигонами, по которым матрица делится на листы.
- Выберите имя атрибута, значения которого будут использования в качестве имен файлов листов.

При отсутствии выбранного атрибута у некоторых листов, возможен пропуск этих листов или использование в качестве имен файлов сквозной нумерации.

- 7. В поле Выходной путь определите папку для выходных файлов.
- 8. Нажмите ОК для запуска процесса нарезки матрицы высот на листы.

Чтобы использовать распределенные вычисления при нарезке матрицы высот на листы, выполните следующие действия:

- 1. Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).
- 2. Нажмите на кнопку Распределенная обработка. Открывается окно Нарезка матрицы высот по заданному слою с полигонами: распределенная обработка.

👽 Нарезка матрицы высот по заданному слою с полигонами: распределенная обработка 👘 📼 📻 🌉		
Количество обрабатываемых листов:	21	
Количество задач:	ĺ. ▲	
Выходной каталог:	/Techsupport/Waldkirch_Group/Waldkirch_docs/Data/	
Временный каталог:	/Techsupport/Waldkirch_Group/Waldkirch_docs/Data/	
	ОК Отмена	

Рис. 158. Параметры распределенной обработки

3. Количество обрабатываемых листов рассчитывается автоматически и зависит от количества полигонов.

Рекомендуется задавать Количество задач из расчета одна задача на один компьютер.

- 4. Определите папку для хранения набора листов матрицы высот в поле Выходной каталог.
- 5. Определите папку для хранения временных файлов в поле **Временный** каталог.
- 6. Нажмите ОК. Создаются задачи распределенной обработки и выдается сообщение о количестве созданных задач.

В результате нарезки матрица высот делится на части по полигонам выбранного слоя. В качестве имен файлов используются значения выбранного атрибута.

7.7.5. Интерполяция матрицы высот

В системе предусмотрена возможность локального выравнивания значений высот области матрицы высот, ограниченной полигоном на векторном слое.

Чтобы выровнять фрагмент матрицы, выполните следующие действия:

- 1. Создайте векторный слой (см. руководство пользователя «Векторизация»).
- Создайте один или несколько полигонов, которые ограничивают выбранные фрагменты матрицы либо загрузите слой с полигонами для использования в качестве границ.
- 3. Выделите не менее одного граничного полигона для интерполяции значений высоты ячеек внутри него.

4. Выберите ЦМР > Матрицы высот > Интерполировать высоту в выделенных полигонах.... Открывается окно Параметры интерполяции матрицы высот в полигонах.

🜲 Параметры интерполяции ма	атрицы высот в полигонах				
Входная матрица высот					
/Techsupport/Waldkirch_Group/Waldkirch/Data/dem/00000.x-dem					
Выходная матрица высот					
/Techsupport/Waldkirch_Group/Waldkirch/Data/dem/00000_fill.x-dem					
Метод интерполяции матрицы вы С Гладкая модель	сот	О Линейная модель			
ОК			Отмена		

Рис. 159. Параметры интерполяции матрицы высот в полигонах

5. В разделе **Входная матрица высот** нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

По умолчанию для выходной матрицы высот предлагается имя *<имя входной матрицы>_fill.x-dem* и размещение в папке, содержащей файл входной матрицы.

- 7. Установите Метод интерполяции матрицы высот:
 - Гладкая модель;
 - Полиномиальная модель;
 - Линейная модель.
- 8. Нажмите ОК. В результате значение высоты ячеек матрицы высот внутри выделенных полигонов (одного или нескольких) интерполируется выбранным методом.

7.7.6. Обрезка матрицы высот по полигонам

В системе предусмотрена возможность редактирования области покрытия матрицы высот.

Для того чтобы скорректировать размер матрицы высот, выполните следующие действия:

- 1. Создайте векторный слой и полигоны в нем, либо откройте слой с граничными полигонами (см. руководство пользователя «Векторизация»).
- Выделите один или несколько полигонов, по которым следует обрезать матрицу высот.
- 3. Выберите **ЦМР > Матрицы высот > Обрезать по выделенным полигонам...**. Открывается окно **Параметры обрезки по полигонам**.

👽 Параметры обрезки по полигонам	
Входная матрица высот	
/Techsupport/Waldkirch_Group/Waldkirch_Docs/Data/dem/dem2.x-dem	
Выходная матрица высот	
/Techsupport/Waldkirch_Group/Waldkirch_Docs/Data/dem/dem2_cut.x-dem	
Режим	
Обрезать снаружи	
🔘 Вырезать внутри	
Распределенная обработка ОК	Отмена

Рис. 160. Параметры обрезки по полигонам

4. В разделе **Входная матрица высот** нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

По умолчанию для выходной матрицы высот предлагается имя *<имя входной матрицы>_cut.x-dem* и размещение в папке, содержащей файл входной матрицы.

- 6. Установите Режим обрезки матрицы высот:
 - Обрезать снаружи позволяет обрезать матрицу высот за пределами выделенных полигонов;
 - Вырезать внутри позволяет вырезать области матрицы высот внутри выделенных полигонов.
- Нажмите ОК. Матрица высот, полученная после редактирования, автоматически загружается в проект и становится активной.

Рис. 161. Матрица высот с областями, вырезанными внутри полигонов

Для редактирования матрицы высот в режиме распределенной обработки выполните следующие действия:

- 1. Настройте и запустите сервер/клиент распределенной обработки (см. раздел «*Распределенная обработка*» руководства пользователя «Общие сведения о системе»).
- 2. Нажмите на кнопку Распределенная обработка.

😎 Параметры распределенной обрезки по полигонам		
Количество фрагментов на одну задачу:	1	
Временная папка:	>rt/Waldkirch_Group/Waldkirch_docs/Temp/	
	ОК Отмена	

Рис. 162. Параметры обрезки по полигонам

3. Задайте параметры распределенной обработки матрицы высот и нажмите ОК. Создаются задачи распределенной обработки в зависимости от количества используемых ядер и числа фрагментов.

Также в системе предусмотрена возможность удаления граничных областей матрицы высот, состоящих из пустых ячеек. Для этого выполните следующие действия:
1. Выберите ЦМР > Матрицы высот > Обрезать поля.... Открывается окно Параметры обрезки по полигонам.

👦 Обрезка полей	
Входная матрица высот	
/Techsupport/Waldkirch_Docs/Data/dem/dem2.x-dem	
Выходная матрица высот	
/Techsupport/Waldkirch_Docs/Data/dem/dem2_cut.x-dem	
	ОК Отмена

Рис. 163. Обрезка полей матрицы высот

2. В разделе **Входная матрица высот** нажмите на кнопку ____ для выбора исходной матрицы высот в ресурсах активного профиля.

По умолчанию выбирается матрица высот, загруженная в проект.

По умолчанию для выходной матрицы высот предлагается имя < имя входной матрицы>_cut.x-dem и размещение в папке, содержащей файл входной матрицы.

4. Нажмите ОК. В результате открывается матрица высот без удаленных граничных областей.

7.7.7. Добавление пикетов в матрицу высот

В системе предусмотрена возможность добавления пикетов в матрицу высот для уточнения значений ячеек матрицы высот.

Как правило, для этого используется следующая последовательность действий:

- 1. Загрузите или создайте матрицу высот.
- 2. Создайте векторный слой.
- 3. Нарисуйте полигон в области матрицы высот, для которой необходимо редактирование значений ячеек.
- 4. Выделите этот полигон.
- 5. Выберите **ЦМР > Матрицы высот > Преобразовать в пикеты** для получения векторного слоя.

- 6. Выберите в окне **Параметры преобразования в пикеты** векторный слой, на котором выделен полигон.
- 7. [опционально] Если необходимо, задайте остальные параметры преобразования матрицы высот в пикеты.

🚔 Параметры преобразов	ания в пикеты
Коэффициент прореживания	<u>k</u>
Границы	
Запад 735974.469527312 <u>*</u>	Север 260687.336716492 <u>*</u> Размер ячейки 10.000000 Ког 257347.336716492 <u>*</u>
Границы из матрицы высот	
высота: 3340.000 (334 пике	тов) Ширина: 2300.000 (230 пикетов)
Количество пикетов на выход	е: 76820 пикетов
Преобразовывать в преде	лах выделенных полигонов
	ОК Отмена

Рис. 164. Параметры преобразования матрицы высот в пикеты

- 8. Нажмите ОК. Область матрицы высот, ограниченная выделенным полигоном, преобразуется в точки, которые добавляются в новый векторный слой.
- 9. Исправьте положение полученных точек по высоте.
- 10. Выберите **ЦМР > Матрицы высот > Вставить пикеты в матрицу высот**. В результате матрица высот перестраивается с учетом слоя пикетов.

Отмена операции невозможна. Производится автоматическая перезапись активной матрицы высот.

7.7.8. Преобразование матрицы высот в пикеты

В системе предусмотрена возможность преобразования ячеек матрицы высот в пикеты с заданным прореживанием.

Для преобразования выполните следующие действия:

- 1. Создайте или загрузите матрицу высот.
- 2. [опционально] Загрузите векторный слой и выделите полигоны, в пределах которых необходимо преобразование.

3. Выберите **ЦМР > Матрицы высот > Преобразовать в пикеты...** Открывается окно **Параметры преобразования в пикеты**.

🜲 Параметры преобразов	ания в пикеты	×
Коэффициент прореживания	1 •	
Границы	Cesen	
	260687.336716492	
Запад	Размер ячейки Восток	
735974.469527312	10.000000 738274.469	527312
	Or 257347-336716492	
Границы из матрицы высот]	
высота: 3340,000 (334 пике	тов) Ширина: 2300.000 (230 пи	кетов)
Количество пикетов на выход	е: 76820 пикетов	
Преобразовывать в предел	лах выделенных полигонов	
		•
	OK	Отмена

Рис. 165. Параметры преобразования матрицы высот в пикеты

- 4. Задайте Коэффициент прореживания матрицы высот.
- 5. [опционально] Задайте границы матрицы высот в поля Север, Запад, Восток, Юг.

В зависимости от заданного значения коэффициента и границ вычисляется **Размер ячейки** выходной матрицы высот, а также **Высота** и **Ширина** в метрах и в количестве пикетов. Также отображается расчетное **Количество пикетов на выходе**.

Кнопка Границы из матрицы высот позволяет задать значения границ области преобразования соответственно

- [опционально] Если был загружен дополнительный векторный слой с полигонами, для преобразования только внутри интересующих областей установите флажок Преобразовывать в пределах выделенных полигонов и выберите в списке слой с полигонами.
- Нажмите ОК. В результате преобразования выдается сообщение о количестве созданных пикетов и создается новый векторный слой с полученными пикетами.

7.7.9. Панель инструментов «Редактирование матрицы высот»

В системе предусмотрена возможность быстрого редактирования областей матрицы высот с помощью инструментов выделения (подробнее см. в разделе «Выделение объектов» руководства пользователя «Векторизация»). Для этого служит дополнительная панель инструментов **Редактирование матрицы высот**, которая содержит кнопки для выполнения следующих операций:

- 🔝 позволяет вырезать область матрицы высот внутри выделенного полигона;
- **z**1 позволяет установить высоту ячеек матрицы высот внутри выделенной области;
- 🔨 позволяет интерполировать выделенную область матрицы высот по гладкой модели;
- ах² позволяет интерполировать выделенную область матрицы высот по полиномиальной модели;
- 📐 позволяет интерполировать выделенную область матрицы высот по линейной модели.

Изменения, внесенные в матрицу высот при помощи инструментов быстрого редактирования, немедленно сохраняются. Рекомендуется создать копию матрицы высот перед редактированием (**ЦМР > Матрицы высот > Сохранить копию...**).

Для быстрого редактирования области матрицы высот выполните следующие действия:

- 1. Загрузите матрицу высот или сделайте слой с матрицей высот активным.
- 2. Нажмите на кнопку дополнительной панели инструментов **Редактирование матрицы высот**, чтобы определить действие с ячейками матрицы.
- 3. [опционально] Чтобы задать высоту ячеек выделенной области, установите значение высоты в поле справа от кнопки z1.
- 4. Нажмите и удерживайте клавишу **Shift** и выделите мышью область для редактирования. Редактирование происходит автоматически с параметрами, заданными по умолчанию.

Для того чтобы отредактировать несколько областей, повторите выполнение пункта 4 необходимое число раз. Для отключения режима редактирования, выбранного в пункте 2, нажмите во второй раз на соответствующую кнопку.

7.8. Контроль точности построения матрицы высот

7.8.1. Построение матрицы разности

В системе предусмотрена возможность построения матрицы разности путем вычитания одной матрицы высот из другой.

Для построения матрицы разности выполните следующие действия:

- 1. Загрузите минимум две матрицы высот для вычитания.
- 2. Выберите **ЦМР** > Матрицы высот > Контроль точности > Построение матрицы разности.... Открывается окно Параметры вычитания матриц высот.

🜲 Параметры вычитания матриц высот	
▲ 1m_trans_coords (Матрица высот)	
Im_trans_coords_nitered (Матрица высот (2))	
<u> </u>	
_	
• Разность	С Исключающее "ИЛИ"
Выходна	я матрица высот
	ОК Отмена

Рис. 166. Параметры вычитания матриц высот

В списке отображаются все загруженные матрицы высот.

- 3. Выделите в списке слой с матрицей высот, из которой будет происходить вычитание. С помощью кнопок 🛉 и 🖖 переместите ее наверх списка.
- 4. Установите способ построения матрицы разности:
 - Разность при наличии пустот в верхней матрице высот, в выходной матрице на месте пустот остаются NULL-значения;
 - Исключающее «ИЛИ» при наличии пустот в верхней матрице высот в выходной матрице эти пустоты заполняются значениями нижней матрицы высот.

Итоговый знак (положительный/отрицательный) высот ячеек в выходной матрице зависит от последовательности вычитания одной матрицы из другой. Знак высоты

ячеек в области пустот выбирается согласно тому, какая из матриц из которой вычитается.

5. Выделите две матрицы высот в списке. Для этого нажмите и удерживайте клавишу **Ctrl** и щелкните мышью по списку матриц высот.

Матрица из которой происходит вычитание должна находиться выше в списке, чем та с помощью которой происходит вычитание.

- 6. В разделе **Выходная матрица высот** нажмите на кнопку ____ и определите имя и путь хранения выходной матрицы высот в ресурсах активного профиля.
- 7. Нажмите ОК. Выдается сообщение об успешном/неуспешном завершении операции. В случае успешного завершения создается новый слой в *Диспет-чере слоев*.

Для автоматического позиционирования маркера на поверхность активной матрицы высот в системе по умолчанию установлен флажок **Привязка маркера к матрице** высот в активном слое в общих параметрах системы.

7.8.2. Сравнение матриц высот

В системе предусмотрена возможность сравнения двух матриц высот на одну и ту же территорию на предмет расхождений по оси Z.

Для сравнения матриц высот выполните следующие действия:

- 1. Загрузите матрицы высот для сравнения.
- 2. Выберите ЦМР > Матрица высот > Контроль точности > Сравнение матриц высот.... Открывается окно Параметры сравнения матриц высот.

🕏 Параметры сравнения матриц высот	
Im_trans_coords (Матрица высот) test (Матрица высот (2)) Im_trans_coords_filtered (Матрица высот (3)) Im_trans_coords (Матрица высот (4)) 000 (Матрица высот (5))	
💿 Показать наихудшие 128 🔀 отсчетов	
С Показать с ошибкой больше заданной 1.0 1.0 м	
ОК	Отмена

Рис. 167. Параметры сравнения матриц высот

В списке отображаются все загруженные матрицы высот.

- 3. Установите:
 - Показать наихудшие..отсчетов позволяет отобразить список из заданного числа точек с наибольшей ошибкой;
 - Показать с ошибкой больше заданной..м позволяет отобразить список точек с расхождением больше заданного.
- 4. Выделите две матрицы высот в списке. Для этого нажмите и удерживайте клавишу **Ctrl** и щелкните мышью по списку матриц высот.
- 5. Нажмите ОК. Запускается процесс сравнения выбранных матриц высот. По завершении процесса открывается окно **Сравнение матриц высот**.

👶 C na	авнение матри	Ш ВЫСОТ					⊓ xi
B.	abitetise na pr	ių bbico i					
5							
N=0	X=738072.237	Y=257823.	914	Z=650.329	DZ=28.534	 	▲
N=1	X=738072.237	Y=257824.	914	Z=650.257	DZ=28.523		
N=2	X=738072.237	Y=257825.	914	Z=650.184	DZ=28.508		
N=3	X=738072.237	Y=257826.	914	Z=650.088	DZ=28.465		
N=4	X=738072.237	Y=257827.	914	Z=649.989	DZ=28.419		
N=5	X=738071.237	Y=257820.	914	Z=650.453	DZ=27.720		
N=6	X=738071.237	Y=257821.	914	Z=650.381	DZ=27.716		
N=7	X=738071.237	Y=257819.	914	Z=650.526	DZ=27.715		
N=8	X=738071.237	Y=257818.	914	Z=650.599	DZ=27.706		
N=9	X=738071.237	Y=257822.	914	Z=650.308	DZ=27.705		
N=10	X=738071.237	Y=257817	.914	Z=650.671	DZ=27.695		
N=11	X=738071.237	Y=257823	.914	Z=650.236	DZ=27.693		
N=12	X=738071.237	Y=257816	.914	Z=650.744	DZ=27.683		
N=13	X=738071.237	Y=257824	.914	Z=650.163	DZ=27.678		
N=14	X=738071.237	Y=257815	.914	Z=650.817	DZ=27.663		
N=15	X=738071.237	Y=257825	.914	Z=650.090	DZ=27.660		
N=16	X=738071.237	Y=257814	.914	Z=650.889	DZ=27.629		
N=17	X=738071.237	Y=257826	.914	Z=649.963	DZ=27.584		
N=18	X=/380/1.23/	Y=257813	.914	Z=650.962	DZ=27.577		
N=19	X=738071.237	Y=257827	.914	Z=649.854	DZ=27.526		
N=20	X=738071.237	Y=257812	.914	Z=651.035	DZ=27.495		
N=21	X=/380/1.23/	Y=257828	.914	Z=649.755	DZ=27.483		
N=22	X=/380/1.23/	Y=257829	.914	∠=649.656	DZ=27.446		
N=23	X=/380/1.23/	Y=257830	.914	∠=649.558	DZ=27.412		
N=24	X=738071.237	Y=257811	.914	∠=651.107	DZ=27.397		
N=25	X=7380/1.237	Y=25/831	.914	∠=649.459	DZ=27.383		
IN=26	X=738071.237	Y=25/832	.914	∠=649.360	DZ=27.357		
N=27	X=738071.237	Y=257838	.914	∠=648.768	DZ=27.348		
N=28	X=7380/1.237	Y=25/833	.914	2=649.262	DZ=27.336		
N=29	X=7380/1.237	Y=25/83/	.914	∠=648.867	DZ=27.324		1
IN=30	X=738071.237	Y=25/834	.914	∠=649.163	DZ=27.323	 	
СКО=2	2.004		Сред	цний модуль	=1.395	Макс.=28.534	1.

Рис. 168. Параметры сравнения матриц высот

В окне отображается список координат точек, где:

- N порядковый номер пикета;
- Х, Ү, Z координаты пикета с ошибкой;
- DZ расхождение по Z.

В строке состояния окна отображается средняя квадратическая ошибка расхождений (СКО), Средний модуль, максимальное найденное расхождение по Z (Макс.), а также Среднее отклонение по найденным точкам.

Кнопка 🔁 позволяет сохранить таблицу в файл с расширением csv.

Двойной щелчок мыши по строке позволяет выделить точку на активном слое матрицы высот.

7.8.3. Поиск областей матрицы высот

Для анализа качества построения матрицы высот в системе предусмотрена возможность поиска пустых ячеек в матрице высот.

Поиск пустых ячеек не рекомендуется применять при наличии больших объемов данных.

Для поиска пустых ячеек в матрице высот выполните следующие действия:

1. Постройте или загрузите матрицу высот.

Если в проект загружено несколько матриц высот, поиск выполняется в активном слое матрицы высот.

 Выберите ЦМР > Матрицы высот > Контроль точности > Поиск областей матрицы высот. Открывается окно Параметры поиска областей матрицы высот.

😎 Параметры поиска областей матрицы высот 🛛 🔀						
Уровень пирамиды для поиска	0					
Области матрицы высот для поиска	Области без данных 🔻					
Уровень вложенности областей	Без вложенности 🔻					
🔲 Минимальная длина полигонов	2.0 n					
Число объектов для показа	128					
ОК Отмена						

Рис. 169. Параметры поиска областей матрицы высот

3. Введите Уровень пирамиды изображения для поиска пустых ячеек.

_> Нулевой уровень пирамиды соответствует исходному изображению.

- 4. Задайте Области матрицы высот для поиска:
 - Области без данных поиск пустых ячеек матрицы высот;
 - Области с данными поиск ячеек имеющих значения;
 - Все области поиск пустых ячеек матрицы высот и ячеек со значениями.
- Задайте Уровень вложенности областей для того чтобы задать настройки поиска «вложенных областей» (например, область с пустыми ячейками, находящаяся внутри области ячеек со значениями, находящейся внутри большей области с пустыми ячейками);
- [опционально] установите флажок Минимальный периметр полигонов для исключения из поиска областей с размерами меньше установленного значения. Задайте значение минимального периметра полигонов в метрах;
- 7. Задайте **Число объектов для показа**, для того чтобы указать число областей, которые будут отображены в окне **Пустые ячейки** (в окне будут отображены обнаруженные первыми области, в заданном количестве).

8. Нажмите ОК. Запускается процесс поиска пустых ячеек. В результате поиска открывается окно **Пустые ячейки** или выдается сообщение об отсутствии пустых ячеек.

🜻 Пу	стые ячейки
B 🖪	
N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=7 N=8 N=10 N=11	X=737208.443 Y=260634.043 (31) X=737831.593 Y=25963.417 (5) X=737003.784 Y=259624.366 (19) X=737005.593 Y=259653.417 (5) X=73633.659 Y=25943.717 (5) X=73691.699 Y=25923.717 (5) X=73691.693 Y=259195.084 (4) X=736545.693 Y=259858.284 (12) X=736545.693 Y=259858.244 (12) X=736545.693 Y=259862.3417 (5) X=736396.599 Y=2598623.417 (5)

Рис. 170. Список пустых ячеек

В окне отображается список областей с пустыми ячейками (в количестве ограниченном параметром **Число объектов для показа**), где:

- N порядковый номер области;
- Х, Ү координаты центров областей с пустыми ячейками;
- (31) количество вершин в векторном полигоне, ограничивающем найденную область (для построения векторного слоя с точками на границах пустых областей, нажмите на кнопку).

Кнопка 🔁 позволяет сохранить список в файл с расширением *.csv.

Для того чтобы создать векторный слой с точками на границах пустых областей, нажмите на кнопку

Векторные границы будут созданы для всех обнаруженных областей, кроме областей исключенных из поиска параметром **Минимальная длина полигонов**, но независимо от значения параметра **Число объектов для показа**.

Двойной щелчок **левой клавишей мыши** по пункту списка в окне **Пустые ячейки** перемещает маркер к соответствующей области, обнаруженной в процессе поиска.

Для редактирования матрицы высот с пустыми ячейками предусмотрены следующие возможности:

- различные методы заполнения пустых ячеек (см. раздел 7.6);
- выравнивание выбранного фрагмента матрицы по высоте (см. раздел 7.6);

• редактирование векторных объектов и перестроение матрицы высот в случае, если при построении матрицы использовались базовые векторные слои.

7.8.4. Контроль матрицы высот по TIN

В системе предусмотрена возможность контроля построения матрицы высот по TIN. Контроль производится путем вычисления отклонений вершин исходного TIN от построенной матрицы по высоте.

Для контроля построения матрицы высот выполните следующие действия:

1. Выберите ЦМР > Матрицы высот > Контроль точности > Контроль по TIN. Открывается окно Параметры контроля точности по TIN.

🜻 Параметры контроля то	очности по TIN 📃 🗖 🗙
Показать наихудшие	128 🗴 отсчетов
С Показать с ошибкой боль	ыше заданной 1.0 🌋 м
	ОК Отмена

Рис. 171. Параметры контроля точности по TIN

- 2. Установите:
 - Показать наихудшие..отсчетов позволяет отобразить список из заданного числа вершин TIN с наибольшей ошибкой;
 - Показать с ошибкой больше заданной..м позволяет отобразить список точек с отклонением по высоте от матрицы высот больше заданного.
- 3. Нажмите ОК. Запускается процесс сравнения выбранных матриц высот. После завершения процесса открывается окно Контроль DEM по TIN.

😞 Koi	нтроль DEM по	TIN				×
* *	🤅 🔁 🦻					
N=0	X=736548.340	Y=260597.1	169 Z=572.423	DZ=3.735		-
N=1	X=736574.927	Y=259598.9	979 Z=561.619	DZ=-2.811		-
N=2	X=737753.096	Y=260680.6	664 Z=575.757	DZ=2.743		
N=3	X=736545.359	Y=260596.6	675 Z=572.061	DZ=2.691		
N=4	X=736811.654	Y=259562.4	457 Z=568.540	DZ=-2.601		
N=5	X=736800.683	Y=259533.4	425 Z=569.226	DZ=-2.483		
N=6	X=737143.356	Y=260676.8	337 Z=578.158	DZ=2.343		
N=7	X=736579.581	Y=260598.7	704 Z=564.183	DZ=2.343		
N=8	X=736801.962	Y=259536.4	446 Z=569.370	DZ=-2.247		
N=9	X=736813.442	Y=259567.0	088 Z=568.296	DZ=-2.242		
N=10	X=737147.417	Y=260675.	955 Z=579.001	DZ=2.180		
N=11	X=736711.567	Y=259299.	222 Z=572.478	DZ=-2.033		
N=12	X=736691.315	Y=259249.	012 Z=573.612	DZ=-2.024		
N=13	X=736538.860	Y=260597.	043 Z=571.702	DZ=1.977		
N=14	X=736578.065	Y=259598.	056 Z=567.326	DZ=1.929		
N=15	X=736523.708	Y=258801.	499 Z=580.510	DZ=1.888		
N=16	X=736821.626	Y=259589.	626 Z=568.351	DZ=-1.871		Ŧ
СКО=1	.357	0	Средний модуль	=1.311	Макс.=3.735	

Рис. 172. Результаты контроля точности матрицы высот по TIN

В окне отображается список координат точек, где:

- N порядковый номер;
- Х, Ү, Z координаты пикета с ошибкой;
- DZ расхождение по Z между матрицей высот и TIN.

В строке состояния окна отображается средняя квадратическая ошибка расхождений (СКО), Средний модуль, максимальное найденное расхождение по Z (Макс.) на найденных точках.

Кнопка 훰 позволяет сохранить список в файл с расширением csv.

Двойной щелчок мыши по строке позволяет выделить точку на активном слое матрицы высот.

Список ошибочных вершин включает вершины, находящиеся на всех стереопарах текущего проекта.

- 4. [опционально] Чтобы изменить параметры отображения списка, нажмите на кнопку 10 Для отображения изменений в списке, нажмите на кнопку .
- 5. Для редактирования TIN с помощью списка предусмотрены следующие возможности:
 - чтобы удалить выбранную вершину TIN, нажмите на кнопку 💥 или клавишу **Delete**;
 - для удаления всех вершин, ошибка на которых больше или равна выбранной в списке, нажмите на кнопку <u>2</u>.
- 6. Нажмите на кнопку >, чтобы перестроить матрицу высот с учетом внесенных изменений.

7.8.5. Контроль матрицы высот по векторным объектам

В системе предусмотрена возможность контроля качества построения матрицы высот путем сравнения координат вершин матрицы высот с координатами вершин слоя векторных объектов. При этом слой с векторными объектами не должен использоваться в качестве базового слоя для построения этой матрицы высот или TIN.

Контроль матрицы по векторным объектам необходим для оценки точности импортированной матрицы высот либо, наоборот, векторных объектов по «эталонной» матрице высот. В процессе сравнения векторных объектов с матрицей высот сравниваются координаты Z пикетов или вершин векторных объектов с высотой в соответствующих точках матрицы высот.

Для контроля построения матрицы высот по векторным объектам выполните следующие действия:

 Выберите ЦМР > Матрицы высот > Контроль точности | Контроль по векторным объектам. Открывается окно Параметры контроля точности DEM по векторам.

素 Параметры контроля точности DEM по векторам	
🕫 Показать наихудшие 128 🕺 отсчетов	
С Показать с ошибкой больше заданной 1.0 1.0 м	
ОК ОТ	гмена

Рис. 173. Параметры контроля точности по векторам

- 2. Установите:
 - Показать наихудшие..отсчетов позволяет отобразить список из заданного числа пикетов с наибольшей ошибкой;
 - Показать с ошибкой больше заданной..м позволяет отобразить список точек с отклонением по высоте от матрицы высот больше заданного.
- Нажмите ОК. Запускается процесс сравнения выбранных матриц высот. После завершения процесса открывается окно Контроль DEM по векторным объектам.

😞 Koi	нтроль DEM по	векторн	ым объектам			
P2						
N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=7 N=8 N=10 N=11 N=12 N=13 N=14	×=736200.158 ×=736548.340 ×=735988.596 ×=735988.596 ×=735988.596 ×=735989.203 ×=73578.400 ×=735989.285 ×=738083.295 ×=738083.295 ×=737753.096 ×=737753.096 ×=737753.096 ×=736574.927 ×=737753.096	Y=257439. Y=260597. Y=257429. Y=258231. Y=258231. Y=260678. Y=258534. Y=2569481. Y=258299. Y=257946. Y=259598 Y=250596 Y=260596 Y=260596 Y=257438	094 Z=633.362 169 Z=672.423 64 Z=634.176 468 Z=608.715 817 Z=634.186 16 Z=78.850 909 Z=844.98 909 Z=684.439 909 Z=684.439 908 Z=608.515 076 Z=639.794 423 Z=605.276 979 Z=561.619 664 Z=577.575 675 Z=572.061 879 Z=633.045	DZ=4.367 DZ=3.735 DZ=3.603 DZ=3.603 DZ=3.501 DZ=3.406 DZ=3.145 DZ=2.983 DZ=2.833 DZ=2.833 DZ=2.813 DZ=2.813 DZ=2.611		
 СКО=3	3.227		Средний модуль	=3.190	Макс.=4.367	

Рис. 174. Результаты контроля точности матрицы высот по векторным объектам

В окне отображается список координат точек, где:

- N порядковый номер;
- Х, Ү, Z координаты пикета с ошибкой;
- DZ расхождение по Z между матрицей высот и вершинами векторных объектов.

В строке состояния окна отображается средняя квадратическая ошибка расхождений (СКО), Средний модуль, максимальное найденное расхождение по Z (Макс.) на найденных точках.

Кнопка 🔁 позволяет сохранить список в файл с расширением csv.

Двойной щелчок мыши по строке позволяет выделить точку на активном слое матрицы высот.

Список ошибочных вершин включает вершины, находящиеся на всех стереопарах текущего проекта.

7.8.6. Контроль матрицы высот по точкам триангуляции

В системе предусмотрена возможность контроля построения матрицы высот путем сравнения координат вершин матрицы высот с высотами вершин слоя, содержащего точки триангуляции. При этом слой точек триангуляции не должен использоваться для построения этой матрицы высот.

Для этого служит пункт меню ЦМР > Матрицы высот > Контроль точности > Контроль по точкам триангуляции.

Создавать векторный слой точек триангуляции при этом нет необходимости.

Окно Контроль точности содержит таблицу всех точек (опорных/контрольных/связующих), полученных на этапе построения сети (см. руководство пользователя «Построение сети»).

Контро	Контроль точности 🛛 🛛						
🔽 Опор	ные 🛛 🕅 Ка	нтрольные 🗖 Сг	ущения	🔽 Связующие Исп. точ	нек: 111 🔲 Только измеренн	ње 🔽 Уравненны	e
N	Имя	Тип ♥	Исп.	×	Y	Z	Ez 🔺
1	779	Опор.					
2	970	Опор.	\checkmark	736273.107	259010.319	581.189	0.150
3	6720	Опор.	\checkmark	736702.689	258651.542	586.614	0.072
4	163	Опор.	\checkmark	737988.869	259849.303	586.251	-0.056
5	6719	Опор.	\checkmark	737810.934	257589.694	633.319	-0.342
6	40169P	Опор.	\checkmark	736405.352	258080.397	589.499	0.060
7	~1	Связ.					
8	~3	Связ.	\checkmark	737242.408	258954.420	586.001	-0.127
9	~4	Связ.	\checkmark	736953.710	259134.519	586.206	-0.034
10	~5	Связ.	\checkmark	737210.858	258898.765	587.001	-0.139
11	~6	Связ.	\checkmark	737536.131	259337.785	584.183	0.040
12	~12	Связ.	\checkmark	737222.900	258899.918	586.518	-0.124
13	~13	Связ.	\checkmark	737556.417	258969.428	588.204	-0.053
14	~14	Связ.	\checkmark	737026.982	259128.677	584.874	0.391
15	~17	Связ.	\checkmark	737581.933	259416.160	581.258	-0.136
16	~18	Связ.	\checkmark	737181.279	259348.205	588.448	0.360
17	~20	Связ.		737543.212	259350.177	583.832	-0.029
MBX	UKU: 0.712	Max	5.578				

Рис. 175. Контроль точности по точкам триангуляции

Верхняя панель инструментов окна служит для настройки отображения точек триангуляции в списке: Опорные, Контрольные, Связующие, точки Сгущения, Только измеренные (точки триангуляции с вычисленной в процессе построения матрицы высот координатой Z), Уравненные.

Поле **Исп. точек** служит для отображения количества точек, которые используются при вычислении отклонения матрицы высот по Z-координате (в столбце **Исп.** установлен **.**).

Таблица точек триангуляции состоит из следующих столбцов:

- Имя номер точки;
- Тип тип точки: опорная, контрольная либо связующая точка;
- Исп. данные об использовании точки при вычислении отклонения матрицы высот по Z-координате:
 - *—* точка триангуляции использовалась;
 - — точка триангуляции не использовалась;
 - 🗢 точка триангуляции не может быть использована, так как не использовалась в уравнивании.
- Х, Ү, Z уравненные координаты точки триангуляции;
- Ez значение отклонения матрицы высот от точки триангуляции по Z-координате.

Панель статуса служит для отображения значения средней квадратической ошибки (**СКО**) и значения максимальной ошибки отклонения по Z-координате (**Мах**).

Кнопка 🎬 позволяет отобразить в списке точку с максимальной ошибкой отклонения от точек триангуляции по Z-координате.

Кнопка 🖹 позволяет открыть подробный отчет контроля точности.

🜻 Отчет							_ 🗆 ×
👖 🖻 A 🎒							
Контроль точ	ности						
L	-						
Блок: Waldki	rch (T)				(D-+- / d / 00000		
матрица высо	T: / lecr	ISuppor	.c/waldkirch_	roup/waldkirch/	Data/dem/00000	_corr.x-dem	
Отклонения.							
N	Тип	Исп.	x	У	Z	Ez	
779	Опор.	_	737124.838	257793.565	612.469	0.055	
970	Опор.	+	736273.107	259010.319	581.189	0.150	
6720	Опор.	+	736702.689	258651.542	586.614	0.072	
163	Опор.	+	737988.869	259849.303	586.251	-0.056	
6719	Опор.	+	737810.934	257589.694	633.319	-0.342	
40169P	Опор.	+	736405.352	258080.397	589.499	0.060	
~1	Связ.	-	737216.883	258832.545	589.103	-0.101	
~3	Связ.	+	737242.408	258954.420	586.001	-0.127	
~4	Связ.	+	736953.710	259134.519	586.206	-0.034	
~5	Связ.	+	737210.858	258898.765	587.001	-0.139	
~6	Связ.	+	737536.131	259337.785	584.183	0.040	
~12	Связ.	+	737222.900	258899.918	586.518	-0.124	
~13	Связ.	+	737556.417	258969.428	588.204	-0.053	
~14	Связ.	+	737026.982	259128.677	584.874	0.391	
~17	Связ.	+	737581.933	259416.160	581.258	-0.136	
~18	Связ.	+	737181.279	259348.205	588.448	0.360	
~20	Связ.	+	737543.212	259350.177	583.832	-0.029	
~21	Связ.	+	737085.988	260357.068	545.370	-0.326	
~24	Связ.	+	737300.178	260193.702	587.349	5.578	
~25	Связ.	+	737029.669	260385.085	545.355	-0.071	•

Рис. 176. Отчет контроля точности по точкам триангуляции

Верхняя панель окна Отчет содержит следующие кнопки:

- 👖 позволяет закрыть окно отчета;
- 🔁 позволяет сохранить отчет в файловой системе Windows;
- А позволяет изменить шрифт, начертание, размер либо цвет текста отчета;
- 🗁 позволяет распечатать отчет.

7.8.7. Построение гистограммы по матрице высот

В системе предусмотрена возможность построения гистограммы по матрице высот.

Для этого выберите пункт меню ЦМР > Матрица высот > Контроль точности > Построить гистограмму по матрице высот.

Открывается окно Параметры построения гистограммы по матрице высот.

😎 Па	😎 Параметры построения гистогра 🗖 🗖 🗾 🌌				
Диапазон высот					
Min	529.637878 м Мах 671.231934	м			
Рабочий диапазон высот					
Min	529.637878418 🚔 м Мах 671.231933594 🚔 м				
Шаг	1.415940552 🚔 м				
ОК Отмена					

Рис. 177. Окно параметров построения гистограммы

Верхняя часть окна служит для отображения диапазона высот матрицы, нижняя - для настройки параметров построения гистограммы. Для построения гистограммы установите **рабочий диапазон высот** и **шаг** и нажмите ОК. Открывается окно **Гистограмма**.

7.8.8. Создание файла статистики по матрице высот

В системе предусмотрена возможность получения статистических данных матрицы высот. Статистические данные предоставляются в виде файла формата *.csv, и

включают в себя информацию о распределении количества ячеек матрицы высот в рамках заданных диапазонов высот, а так же об отношении данного количества к общей сумме ячеек.

Для создания файла статистики выполните следующее:

- 1. Создайте или загрузите матрицу высот;
- Выберите ЦМР > Матрицы высот > Контроль точности > Получить статистику по матрице высот. Открывается окно Построение статистики по матрице высот;

😍 Построение статистики по матрице высот 💷 🗵				
Начало отсчета	0.0 × M			
Шаг	10.0 <u>м</u> м			
Минимальный остато	c 0.01 🔦 %			
Выходной файл C:\Us	ers\guk\Downloads\635			
ОК Отмена				

Рис. 179. Окно параметров построения статистики матрицы высот

- 3. Нажмите на кнопку ____ для того чтобы задать расположение файла с данными статистики;
- 4. Задайте следующие параметры:
 - Начало отсчета высоту в метрах, с которой будет начат сбор статистических данных о распределении количества ячеек матрицы по высоте.
 - Шаг размер диапазонов высот в метрах, для которых будут собраны статистические данные о распределении количества ячеек матрицы по высоте.
 - Минимальный остаток точность общей суммы количества ячеек матрицы высот, для всех диапазонов высот, где были собраны статистические данные.
- Нажмите **ОК**. Файл статистики в формате *.csv создается в указанном расположении.

Например, при заданных параметрах:

• Начало отсчета — 0.0 м.

- Шаг 10.0 м.
- Минимальный остаток 0.01.

файл статистики по матрице высот имеет примерно следующий вид:

Range, Number of points, Percent

< 0,0,0

0 - 10, 0, 0

10 - 20,0,0

- <...>
- 550 560,0,0
- 560 570,19402,0.783919
- > 570,5348,0.216081

где:

- Range диапазоны высот в метрах для которых проводился сбор статистики.
- Number of points количество ячеек в соответствующем диапазоне.
- Percent отношение данного количества ячеек к общему количеству ячеек матрицы высот.

соответственно, в приведенном примере все ячейки матрицы высот расположены только в двух диапазонах высот:

- 560 570 метров: 19402 ячейки, что составляет ~ 78% от общего числа ячеек;
- 570 580 метров: 5348 ячеек, что составляет ~ 22% от общего числа ячеек.

Таким образом сумма значений параметра **Percent** должна составлять единицу, где заданный в окне параметров построения статистики **Минимальный остаток** является допустимым значением отклонения от данного числа.

7.8.9. Списки min/max значений матрицы высот

В системе предусмотрена возможность получения статистических данных матрицы высот, в виде списков минимальных и максимальных значений матрицы высот.

Для этого выполните следующее:

- 1. Создайте или загрузите матрицу высот;
- Выберите ЦМР > Матрицы высот > Контроль точности > Списки min/max значений матрицы высот. Открывается окно Число высот для показа;

Рис. 180. Окно «Число высот для показа»

- 3. В разделе **Min** задайте число минимальных значений матрицы высот для показа (от 1 до 100);
- 4. В разделе **Мах** задайте число максимальных значений матрицы высот для показа (от 1 до 100);
- 5. Нажмите **ОК**. Открывается окно **Міп/Мах высоты матрицы**, содержащие списки минимальных и максимальных значений матрицы высот;

	Минимальные высоты	Максимальные высоты	
1	529.638	671.232	
2	529.665	671.224	
3	529.668	671.217	
4	529.695	671.209	
5	529.698	671.201	

Рис. 181. Окно «Min/Max высоты матрицы»

6. [опционально] нажмите **Создать векторный слой**, для того чтобы создать слой с пикетами, отмечающими расположение ячеек матрицы высот с минимальными и максимальными значениями, из полученных списков.

Имена пикетов имеют следующий вид: 529.638(min) и 671.232(max), где 529.638 и 671.232 — отметки высот, (min) и (max) — принадлежность к списку минимальных и максимальных высот, соответственно.

7. Нажмите Закрыть для того чтобы закрыть окно Min/Max высоты матрицы.

7.9. Сохранение матрицы высот

В системе предусмотрена возможность сохранения матрицы высот в файл с расширением x-dem. Имя файла и папка для размещения матрицы высот в ресурсах активного профиля назначается перед построением матрицы высот.

Для сохранения открытой матрицы высот в новый файл служит пункт меню ЦМР > Матрицы высот > Сохранить копию....

Для сохранения области матрицы высот выделите часть матрицы (см. раздел «Выделение векторных объектов» в руководстве пользователя «Векторизация») и выберите **ЦМР > Матрицы высот > Сохранить выделенное...**.

Для сохранения матрицы высот в виде растрового файла с сохранением геодезической привязки выполните следующие действия:

- 1. Загрузите матрицу высот.
- 2. Выберите **ЦМР > Матрицы высот > Сохранить как геопривязанный растр...**. Открывается окно **Параметры**.

👶 Параметры	×
Выход	ной файл
C:\43.tif	
Тип выходного файла:	TIFF
Тип файла геопривязки:	ArcWorld TFW
🗌 Создавать MS TIFF	
Уровень пирамиды:	1 *
Цветность:	Цветной 💌
🔲 Подчеркивать рельес	Þ
	ОК Отмена

Рис. 182. Параметры сохранения матрицы высот в растровом файле

- 3. В разделе **Выходной файл** нажмите на кнопку, чтобы задать имя и папку для размещения матрицы высот вне ресурсов активного профиля.
- 4. Выберите Тип выходного файла TIFF либо Windows BMP.
- 5. Выберите Тип файла геопривязки:
 - нет в случае отсутствия файлов геопривязки;
 - PHOTOMOD GEO;
 - ArcWorld TFW;
 - MapInfo TAB.

- [опционально] Для создания дополнительного внутреннего файла системы MS TIFF, который позволяет использовать выходной растровый файл в системе без преобразований, установите флажок Создавать MS TIFF.
- 7. [опционально] Чтобы сохранить в качестве изображения уровень пирамиды, отличный от исходного, задайте **Уровень пирамиды**.
- 8. Выберите Цветность выходного файла Цветной либо Оттенки серого.
- 9. [опционально] Чтобы увеличить детальность отображения матрицы высот при сохранении в качестве растрового файла, установите флажок **Подчеркивать рельеф**.
- 10. Нажмите ОК. В результате создается файл с растровым представлением матрицы высот, а также файл геопривязки.

7.10. Восстановление матрицы высот

В системе предусмотрена возможность восстановления целостности матрицы высот, которая могла быть нарушена в результате редактирования или фильтрации матрицы высот.

Для восстановления матрицы высот выполните следующие действия:

- 1. Загрузите матрицу высот в проект.
- Выберите ЦМР > Матрицы высот > Восстановить. Открывается окно Перестроить пирамиду матрицы высот.

Перестроить пирамиду матрицы высот		
🥅 Перестроить пирамиды фрагментов		
🔽 Перестроить общую пирамиду		
🦳 Пересчитать границы по высоте		
ОК Отмена		

Рис. 183. Восстановление матрицы высот

- 3. Выберите следующие параметры восстановления матрицы высот:
 - Перестроить пирамиды фрагментов позволяет перестроить матрицу высот по фрагментам (тайлам) в случае, если матрица высот состоит из них;
 - Перестроить общую пирамиду (установлен по умолчанию) позволяет перестроить общую пирамиду для матрицы высот;

- Пересчитать границы по высоте позволяет изменить цветовое отображение матрицы высот после изменения ее границ по высоте.
- 4. Нажмите ОК. В результате происходит перестроение матрицы и выдается сообщение о успешном/неуспешном обновлении матрицы.

7.11. Загрузка матрицы высот

В системе предусмотрена возможность загрузки сохраненной матрицы высот как из ресурсов активного профиля, так и из файла вне ресурсов активного профиля.

Для загрузки матриц высот из ресурсов активного профиля выполните следующие действия:

1. Выберите ЦМР > Матрицы высот > Открыть (Ctrl+O, D) либо нажмите на кнопку 🥵 основной панели инструментов. Открывается окно Открыть.

Рис. 184. Загрузка матрицы высот

2. Выберите один или несколько файлов матриц высот в ресурсах активного профиля с расширением x-dem.

. При выборе нескольких файлов каждая матрица высот загружается в отдельный слой.

 Нажмите Открыть. Если в активном проекте уже загружен один или несколько слоев с матрицей высот, при загрузке нового слоя открывается окно выбора типа загрузки.

👼 Загрузка 💶 🗙
Олой Матрица высот (3) содержит данные.
Очистить слой и продолжить загрузку в него
Создать новый слой и продолжить загрузку данных в него
Отмена

Рис. 185. Загрузка матрицы высот

В системе предусмотрены следующие возможности загрузки нового слоя в существующий слой матрицы высот:

- Очистить слой и продолжить загрузку в него данные активного слоя заменяются данными из загружаемого слоя;
- Создать новый слой и продолжить загрузку данных в него данные загружаются в новый слой.

Соответствующие слои Матрица высот отображаются в Диспетчере слоев.

В строке состояния 2D-окна в качестве значения Z отображается высота ячейки активной матрицы высот.

Для загрузки матрицы высот из внешних данных без конвертации во внутренний формат предусмотрен пункт меню **ЦМР > Матрицы высот > Открыть из файла...**

Загрузка и отображение матрицы высот в формате с расширением, отличным от x-dem, может занимать продолжительное время.

Также в системе предусмотрена возможность преобразования лидарных данных в матрицу высот (см. руководство пользователя «Обработка лидарных данных»).

7.12. Экспорт матрицы высот

7.12.1. Экспорт матрицы высот

В системе предусмотрена возможность экспорта матрицы высот в следующие форматы:

- ArcInfo ASCII grid обменный формат с расширением asc либо grd, который используется в программе ArcInfo;
- **ASCII** обменный текстовый формат с расширением txt, который поддерживается большим количеством программ разной специализации (описание формата см. в руководстве пользователя «Векторизация»);
- SurferASCII grid обменный формат с расширением grd, который используется в программе Surfer;

• USGS DEM — обменный формат с расширением dem, который разработан United States Geological Survey (USGS).

Для экспорта матрицы высот, например, в формат ArcInfo ASCII grid выберите **ЦМР > Матрицы высот > Экспорт > ArcInfo ASCII grid...**. Открывается окно **Экспорт в формат ArcInfo grid**. Выберите папку для размещения файла в файловой системе *Windows*. Введите имя файла в поле ввода **Имя файла**. Нажмите на кнопку **Сохранить** для завершения экспорта.

7.12.2. Экспорт в CSV

В системе предусмотрена возможность экспорта матрицы высот в формат CSV. Формат CSV представляет собой обменный текстовый формат с расширением csv, который поддерживается большим количеством программ разной специализации. Он используется как обменный формат в случаях, когда специализированные форматы для геопространственных данных по тем или иным причинам применить невозможно.

Для экспорта матрицы высот в формат CSV выполните следующие действия:

- 1. Выберите ЦМР > Матрицы высот > Экспорт > CSV.... Открывается окно Экспорт в формат CSV.
- 2. Выберите папку для размещения файла в файловой системе Windows.
- 3. Нажмите на кнопку Сохранить. Открывается окно Экспорт в формат CSV.

Рис. 186. Параметры экспорта в формат CSV

- 4. [опционально] Для того чтобы заполнить пустые ячейки матрицы, установите флажок **Значение для пустых ячеек** и введите в поле ввода необходимое значение в метрах.
- 5. [опционально] Для того чтобы разделить файл формата CSV на отдельные фрагменты, установите флажок **Делить на фрагменты**.

- 6. В разделе **Десятичный разделитель** установите, точка или запятая используется для разделения координат.
- 7. В разделе **Разделитель полей** установите, чем разделяются поля: запятая, пробел, табуляция, точка с запятой или другие разделители.

При наличии разделителя полей в виде запятой не рекомендуется использовать десятичный разделитель в виде запятой, иначе в результате экспорта могут быть созданы объекты с некорректными координатами.

- 8. [опционально] Для того чтобы поменять местами координаты X,Y в экспортированной матрице высот, установите флажок **Менять местами X и Y**.
- 9. Нажмите ОК для завершения экспорта.

7.12.3. Экспорт в DTED

В системе предусмотрена возможность экспорта матрицы высот в формат Digital Terrain Elevation Data (DTED). Представляет собой обменный формат с расширением dt2, который используется в программах ESRI ArcGIS Desktop и Pitney Bowes MapInfo.

Для экспорта матрицы высот в формат DTED выполните следующие действия:

- 1. Выберите **ЦМР > Матрицы высот > Экспорт > DTED DEM...**. Открывается окно **Экспорт в формат DTED**.
- 2. Выберите папку для размещения файла в файловой системе Windows.
- 3. Введите имя файла в поле ввода Имя файла.
- 4. Нажмите на кнопку Сохранить. Открывается окно Параметры.

Рис. 187. Параметры экспорта в формат DTED

Для экспорта типов данных, имеющих целочисленное значение по умолчанию в поле **Тип данных** установлено **Int16** (целочисленный тип данных используются для представления чисел в диапазоне от -32 768 до 32 767).

5. [опционально] Для того чтобы заполнить пустые ячейки матрицы, задайте необходимое **Значение для пустых ячеек** в метрах.

6. Нажмите ОК для завершения экспорта.

7.12.4. Экспорт в ERDAS Imagine

В системе предусмотрена возможность экспорта матрицы высот в формат ERDAS Imagine. Представляет собой обменный формат с расширением img, который используется в программах ERDAS Imagine и ESRI ArcGIS Desktop.

Для экспорта матрицы высот в формат ERDAS Imagine выполните следующие действия:

- 1. Выберите **ЦМР > Матрицы высот > Экспорт > ERDAS Imagine DEM...**. Открывается окно **Экспорт в формат ERDAS Imagine**.
- 2. Выберите папку для размещения файла в файловой системе Windows.
- 3. Введите имя файла в поле ввода Имя файла.
- 4. Нажмите на кнопку Сохранить. Открывается окно Параметры.

Рис. 188. Параметры экспорта в формат ERDAS Imagine

- 5. Выберите в списке Тип данных один из следующих типов данных:
 - Ulnt 8 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 255;
 - Int 8 целочисленный тип данных, используется для представления чисел в диапазоне от -128 до 127;
 - Ulnt 16 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 65535;
 - Int 16 целочисленный тип данных, используется для представления чисел в диапазоне от -32 768 до 32 767;
 - Ulnt 32 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 4 294 967 295;
 - Int 32 целочисленный тип данных, используется для представления чисел в диапазоне от -2 147 483 648 до 2 147 483 647;

- Float 32 тип данных, используется для представления чисел с плавающей точкой в диапазоне от 3.4e-038 до 3.4e+038;
- Float 64 тип данных, используется для представления чисел с плавающей точкой в диапазоне от 1.7e-308 до 1.7e+308.
- 6. [опционально] Для того чтобы заполнить пустые ячейки матрицы, задайте необходимое **Значение для пустых ячеек** в метрах.
- 7. Нажмите ОК для завершения экспорта.

7.12.5. Экспорт в GeoTIFF

В системе предусмотрена возможность экспорта матрицы высот в формат GeoTIFF, который является обменным форматом с расширением tif. Формат GeoTIFF — общепринятый формат для хранения геопривязанных растров.

Данные о используемой системе координат матрицы высот отражаются в виде кода стандарта European Petroleum Survey Group (EPSG).

Для экспорта матрицы высот в формат GeoTIFF выполните следующие действия:

- 1. Выберите **ЦМР > Матрицы высот > Экспорт > GeoTIFF DEM...**. Открывается окно **Экспорт в формат GeoTIFF**.
- 2. Выберите папку для размещения файла в файловой системе Windows.
- 3. Введите имя файла в поле ввода Имя файла.
- 4. Нажмите на кнопку Сохранить. Открывается окно Экспорт в формат GeoTIFF.

😎 Экспорт в формат GeoTIFF 🔜			
C:\Users\guk\Documents\8t098.tif			
🔲 Тайловый TIFF			
🗌 Создавать внутреннюю пирамиду			
🕅 Менять местами Х и Ү			
ОК Отмена			

Рис. 189. Параметры экспорта в формат GeoTIFF

- 5. Настройте следующие параметры:
 - [опционально] Установите флажок Тайловый TIFF для создания тайлов;

Для того чтобы задать размер тайла выберите Сервис > Параметры. Открывается окно Параметры. В закладке Системные задайте Размер тайла при записи MS-TIFF (см. раздел «Системные настройки» руководства пользователя «Общие параметры системы»).

 [опционально] установите флажок Создавать внутренню пирамиду для того чтобы создать пирамиды для выходного изображения в файлах внутреннего формата системы;

- [опционально] Для того чтобы поменять местами координаты Х, Ү в экспортированной матрице высот, установите флажок **Менять местами Х и Ү**.
- 6. Нажмите на кнопку ОК. Открывается окно Параметры.

룡 Параметры		
Тип данных:	Int16	•
Значение для пустых ячеек:	0.0	1/4
	ОК	Отмена

Рис. 190. Параметры экспорта в формат GeoTIFF

- 7. Выберите в списке Тип данных один из следующих типов данных:
 - Ulnt 8 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 255;
 - Int 8 целочисленный тип данных, используется для представления чисел в диапазоне от -128 до 127;
 - Ulnt 16 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 65535;
 - Int 16 целочисленный тип данных, используется для представления чисел в диапазоне от -32 768 до 32 767;
 - Ulnt 32 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 4 294 967 295;
 - Int 32 целочисленный тип данных, используется для представления чисел в диапазоне от -2 147 483 648 до 2 147 483 647;
 - Float 32 тип данных, используется для представления чисел с плавающей точкой в диапазоне от 3.4e-038 до 3.4e+038;
 - Float 64 тип данных, используется для представления чисел с плавающей точкой в диапазоне от 1.7e-308 до 1.7e+308.

- 8. [опционально] Для того чтобы заполнить пустые ячейки матрицы, задайте необходимое **Значение для пустых ячеек** в метрах.
- 9. Нажмите ОК для завершения экспорта.

7.12.6. Экспорт в PCIDSK

В системе предусмотрена возможность экспорта матрицы высот в формат PCIDSK, который является обменным форматом с расширением pix и используется в программе *PCI Geomatics Geomatica*.

Для экспорта матрицы высот в формат PCIDSK выполните следующие действия:

- 1. Выберите ЦМР > Матрицы высот > Экспорт > PCIDSK DEM.... Открывается окно Экспорт в формат PCIDSK.
- 2. Выберите папку для размещения файла в файловой системе Windows.
- 3. Введите имя файла в поле ввода Имя файла.
- 4. Нажмите на кнопку Сохранить. Открывается окно Параметры.

😾 Параметры		_
Тип данных:	Int16	
Значение для пустых ячеек:	0.0	1/4
	ОК	Отмена

Рис. 191. Параметры экспорта в формат PCIDSK

- 5. Выберите в списке Тип данных один из следующих типов данных:
 - Ulnt 8 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 255;
 - Int 8 целочисленный тип данных, используется для представления чисел в диапазоне от -128 до 127;
 - Ulnt 16 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 65535;
 - Int 16 целочисленный тип данных, используется для представления чисел в диапазоне от -32 768 до 32 767;
 - Ulnt 32 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 4 294 967 295;

- Int 32 целочисленный тип данных, используется для представления чисел в диапазоне от -2 147 483 648 до 2 147 483 647;
- Float 32 тип данных, используется для представления чисел с плавающей точкой в диапазоне от 3.4e-038 до 3.4e+038;
- Float 64 тип данных, используется для представления чисел с плавающей точкой в диапазоне от 1.7e-308 до 1.7e+308.
- 6. [опционально] Для того чтобы заполнить пустые ячейки матрицы, задайте необходимое **Значение для пустых ячеек** в метрах.
- 7. Нажмите ОК для завершения экспорта.

7.12.7. Экспорт в МТW

В системе предусмотрена возможность экспорта матрицы высот в формат MTW. Формат MTW представляет собой обменный формат с расширением *.mtw, который используется в программе *ГИС Карта 2000*.

Для экспорта матрицы высот в формат MTW выполните следующие действия:

- 1. Выберите ЦМР > Матрицы высот > Экспорт > Панорама МТИ.... Открывается окно Экспорт в формат Панорама МТИ.
- 2. Выберите папку для размещения файла в файловой системе Windows.
- 3. Нажмите на кнопку Сохранить. Открывается окно Экспорт в формат Панорама MTW.

Рис. 192. Параметры экспорта в формат MTW

- 4. Выберите в списке Тип данных один из следующих типов данных:
 - Ulnt 8 целочисленный тип данных, используется для представления чисел в диапазоне от 0 до 255;

- Int 16 целочисленный тип данных, используется для представления чисел в диапазоне от -32 768 до 32 767;
- Int 32 целочисленный тип данных, используется для представления чисел в диапазоне от -2 147 483 648 до 2 147 483 647;
- Float 64 тип данных, используется для представления чисел с плавающей точкой в диапазоне от 1.7e-308 до 1.7e+308.
- 5. Выберите в списке единицы измерения ячейки матрицы высот.
- 6. [опционально] Для того чтобы изменить систему координат при экспорте матрицы высот, установите флажок **Менять местами X и Y**.

Если не установлен флажок **Менять местами Х и Ү**, то исходные данные экспортируются в правой системе координат. Иначе — в левой системе координат.

7. Нажмите ОК для завершения экспорта.

7.12.8. Пакетный экспорт матриц высот

В системе предусмотрена возможность одновременно экспортировать несколько файлов матриц высот одного формата.

Для экспорта нескольких файлов матриц высот выполните следующие действия:

1. Выберите ЦМР · Матрицы высот · Экспорт · Пакетный экспорт. Открывается окно Пакетное экспортирование матриц высот.

😎 Пакетное экспортирование матриц высот	2
Cameras Camera	
	Назад. Далее Отмена

Рис. 193. Пакетное экспортирование матриц высот

2. В дереве ресурсов выберите папку, содержащую матрицы высот.

🕰 Кнопка 🔚 позволяет отобразить все доступные ресурсы во вложенных файлах.

🚬 🛛 Кнопка 🛃 позволяет обновить часть окна с ресурсами.

🖳 Кнопка 🔽 позволяет отобразить список из 10 последних выбранных ресурсов.

3. В списке выберите файл с матрицей высот и нажмите на кнопку >, чтобы добавить файл.

, Кнопки >> и << позволяют добавить/удалить из списка все выделенные файлы с матрицей высот, кнопка < позволяет убрать из списка выделенный файл.

- 4. Повторите действия 2-3 для добавления последующих файлов с матрицами высот.
- 5. Нажмите кнопку Далее.

ходная папка	
cInfo ASCII grid	

Рис. 194. Выбор выходной папки и формата матриц высот

- 6. Нажмите на кнопку ____ в разделе **Выходная папка** и выберите папку в файловой системе *Windows*.
- 7. В списке выберите формат экспортируемых матриц высот.
- 8. Нажмите ОК для запуска процесса экспорта матриц высот.

7.13. Импорт матрицы высот

В системе предусмотрена возможность импорта матрицы высот из файлов со следующими расширениями: grd, asc, tif, dem, mtw, dt1, dt2, img, pix, hgt.

Для импорта матрицы высот из файла поддерживаемого формата выполните следующие действия:

- 1. Выберите ЦМР > Матрицы высот > Импорт.... Открывается окно Импорт матрицы высот.
- 2. В файловой системе Windows выберите файл матрицы высот.
- 3. Нажмите на кнопку Открыть. Открывается окно Импорт матрицы высот.

😌 Импорт матрицы высот		
R:\projects\USA-2106\projects\test\сшивка ма		
🔲 Преобразовать в пустые ячейки значение:		
-1111110.0		
ОК Отмена		

Рис. 195. Параметры импорта матрицы высот

- 4. [опционально] Чтобы преобразовать ячейки матрицы с заданным значением в пустые ячейки, установите флажок **Преобразовать в пустые ячейки зна**чение и задайте необходимое значение.
- 5. Нажмите ОК. Открывается окно Сохранить.

😎 Сохранить			_ 🗆 ×
🖻 🗗 🚺 🖆 + 🖻 🖆 🗶 🗐 🖆			
Ср. dem 🗸 🖌 и	мя 🗢	Размер	Время
ti⊕- dem1 dem1	em1		23.08.2011 13:0
- dem1m d	em1m		23.08.2011 13:0
dem1m_copy	em1m_copy		15.04.2013 14:5
mosaic d	em1m.x-dem	1.10 KE	15.04.2013 14:52
· sheets d	em1m_copy.x-dem	1.11 KE	15.04.2013 14:50
- Images			
Locks			
the ProjOptions			
Temp			
Infomap_images			
Infomap_Roma			
H InfoMap Tects			
Et. InfoMap_Work			
Hondp_work			
Project data			
The Kapopus-B Group			
Lite			F
🗄 Master-class Portugal GeoMosaic NZ	пьтр		
Имя ресурса Матрица высот. х-dem		Латрины высот	•
		Сохранить	Отмена
/Techsupport/InfoMap_Group/InfoMap_copy/Data/dem	Ресурсов 5 / 2 265 бай	т (выбрано ресурсов 0 ;	(0 байт) //.

Рис. 196. Сохранение импортированной матрицы высот

6. В ресурсах активного профиля выберите месторасположение файла и нажмите **Сохранить**.

В системе предусмотрена возможность пакетного импорта матриц высот из файлов со следующими расширениями: grd, asc, tif, dem, mtw, dt1, dt2, img, pix, hgt. При пакетном импорте загружается одновременно несколько файлов из указанной папки.

Для того чтобы импортировать необходимое количество матриц высот из указанной папки, выполните следующие действия:

- 1. Выберите ЦМР > Матрица высот > Пакетный импорт.... Открывается окно Импорт матрицы высот.
- 2. В файловой системе Windows выберите несколько файлов матриц высот.
- 3. Нажмите на кнопку Открыть. Открывается окно Импорт матрицы высот.

•	Параметры	
~	Преобразовать в пустые ячейки зн	начение:
	-1111111.0	
	ОК	Отмена

Рис. 197. Параметры импорта матрицы высот

- 4. [опционально] Чтобы преобразовать ячейки матриц с заданным значением в пустые ячейки, установите флажок **Преобразовать в пустые ячейки значение** и задайте необходимое значение.
- 5. Нажмите ОК. Открывается окно Выбор папки.

😎 Выбор папки		
🝳 + 🔯		
□ □ </th <th></th> <th>*</th>		*
Создать	ОК	Отмена

Рис. 198. Сохранение импортированной матрицы высот

- 6. Выберите папку или создайте новую с помощью кнопки Создать....
- 7. Нажмите ОК для завершения импорта.

В системе предусмотрена возможность пакетного импорта матриц высот из указанной папки. При пакетном импорте из указанной папки матрицы высот загружаются из всех находящихся в папке файлов со следующими расширениями: grd, asc, tif, dem, mtw, dt1, dt2, img, pix, hgt.

Для того чтобы импортировать все матрицы высот, находящиеся в указанной папке, выполните следующие действия:

1. Выберите **ЦМР > Матрица высот > Пакетный импорт из папки...**. Открывается окно **Импорт матрицы высот**;

😎 Поиск файлов по маске 📃 🎫		
Папка		
rs\guk\Downloads\Matrix		
🔲 Искать во вложенных папках		
Фильтр имен файлов: *.*		
ОК Отмена		

Рис. 199. Поиск файлов по маске
- 2. Нажмите на кнопку ____ для того чтобы указать папку импорта в файловой системе Windows;
- [опционально] установите флажок Искать во вложенных папках для импорта матриц высот из вложенных папок;
- [опционально] в случае необходимости импорта только части находящихся в папке матриц высот, в поле ввода Фильтр имен файлов задайте параметры сортировки файлов матриц высот по именам файлов и/или расширениям;

По умолчанию будут импортированы все матрицы высот находящиеся в указанной папке.

5. Нажмите на кнопку ОК. Открывается окно Импорт матрицы высот.

😎 Параметры				
🔽 Преобразовать в пустые ячейки значение:				
-1111111.0				
ОК	Отмена			

Рис. 200. Параметры импорта матрицы высот

- 6. [опционально] Чтобы преобразовать ячейки матриц с заданным значением в пустые ячейки, установите флажок **Преобразовать в пустые ячейки значение** и задайте необходимое значение.
- 7. Нажмите ОК. Открывается окно Выбор папки.

Рис. 201. Сохранение импортированной матрицы высот

- 8. Выберите папку или создайте новую с помощью кнопки Создать....
- 9. Нажмите ОК для завершения импорта.

8. Вычисление объемов

В системе предусмотрена возможность вычисления объема, (т. е. *насыпи* или *выемки*) заключенного между поверхностью матрицы высот (или TIN) и *произвольной плоскостью* Z, или, в более сложном случае, объема, представляющего собой *перекрытие* между двумя (условно, «верхней» и «нижней») поверхностями (которые могут пересекаться или не пересекаться друг с другом).

При вычислении двух объемов, ограниченных одной и той же поверхностью, представленной либо в виде TIN, либо в виде матрицы высот (например, построенной по данному TIN) система позволяет добиться точности, при которой разница между рассчитанными объемами (по DEM и по TIN) составляет не более 1%.

Суть методики расчетов сводится к вычислению объемов ячеек матрицы высот (с известными координатами углов ячейки, в противном случае ячейка пропускается и её объем не учитывается), при этом поверхность соответствующая «потолку» ячейки выстраивается путем билинейной интерполяции по угловым точкам.

В системе предусмотрена возможность расчета объема, заключенного между матрицами высот с различными размерами ячейки.

Для расчета объема выполните следующие действия:

1. Выберите **ЦМР > Матрица высот > Вычисление объемов**. Открывается окно **Вычисление объемов**;

😎 Вычисление объемов					
Исходные данные					
© TIN [
OEM	/Techsupport/Waldkirch_Group/Waldkirch_i				
Точность	DEM no Z	1.0	🚊 метр	C)	
- Референс	ные данные				
Постоя	анная высота	138.0	≜ M	етр	
© TIN 〔					
© DEM	/TechSupportUsers/Финко/Объемы/Credo,				
Точность	DEM no Z	1.0	× M	етр	
- Ограничи	вающая область				
🔲 Ограничивающая область					
Матрица - индикатор					
🔽 Матри	ца высот - индика	тор +/-			
/Techsupport/Waldkirch_Group/Waldkirch копия/Data					
Размер ячейки матрицы - индикатора:					
🖲 шаг ис	ходного DEM/TIN				
🔘 шаг ре	ференсного DEM	/TIN			
🔘 задать вручную:					
1.0метр					
Отчет о результатах					
📝 Показать отчет					
C:\Users\guk\Downloads\2.html					
		[ОК	Отмена	

Рис. 202. Вычисление объемов

- 2. В разделе **Исходные данные** выберите поверхность нерегулярной пространственной сети треугольников (**TIN**) или матрицы высот (**DEM**), ограничивающую вычисляемый объем;
- 3. [опционально] Задайте Точность DEM по Z в метрах параметр, используемый при расчетах матрицы высот, оказывающий влияние на итоговую точность расчета объема.

- Для ячеек *матрицы высот индикатора* (см. ниже), точность которых меньше заданной величины, объем изменений считается нулевым.
- В разделе Референсные данные задайте постоянную высоту плоскости Z, ограничивающей вычисляемый объем «снизу» или выберите заменяющую её вторую матрицу высот или TIN (в случае расчета объема, созданного перекрытием поверхностей);
- 5. [опционально] Задайте Точность DEM по Z в метрах;
- 6. [опционально] В разделе **Ограничивающая область** задайте область, дополнительно ограничивающую рассчитываемый объем в плане.
 - Область расчета объема может быть дополнительно ограничена *только* векторным слоем (полигоном) во внутреннем формате программы *PHOTOMOD*. Иначе требуется конвертация используемых данных в указанный формат.
- [опционально] Для создания матрицы высот индикатора, отображающей насыпи и выемки, установите флажок Матрица высот - индикатор +/- В разделе Матрица - индикатор и задайте путь для сохранения файла матрицы высот.

Задайте Размер ячейки матрицы - индикатора:

- Шаг исходного DEM/TIN;
- Шаг референсного DEM/TIN;
- введите размер ячейки вручную.

 $\sqrt{2}$

- «Шаг» исходного/референсного DEM размер ячейки соответствующей матрицы высот.

«Шаг» исходного/референсного TIN — среднее расстояние между вершинами нерегулярной пространственной сети треугольников.

- 8. [опционально] В разделе **Отчет о результатах** установите флажок **Показать отчет** и задайте путь для сохранения файла отчета с данными о расчете объема.
- 9. Нажмите ОК.

После выполнения вычислений открывается окно Отчет, содержащее результаты вычисления объемов.

Orver	
	Результат расчета объемов 29 ноября 2018 г., 17:05:03
	Проект Aalen_DMC_copy_for_vectors
	Система координат: WGS 84 / UTM zone 32N
Объем насыпи:	21037947.658395 m ³
Объем выемки:	139334.342975 m ³
Относительный объем изменений:	20898613.315420 m ³
Абсолютный объем изменений:	21177282.001370 m ³
Результирующая площадь:	1356216.000000 m ²
Покрывающая поверхность	DEM Файл /Techsupport/Aalen_Group/Aalen_DMC_copy_for_vectors/Data/dem/DEM_2m.x-dem Ширина 495.000000 пикселей Высота 739.000000 пикселей Шаг 2.000000 п ж 2.000000 п Точность по Z ± 1.000000 m
Референсная поверхность	плоскость постоянной высоты Z = 480
Априорная оценка погрешности:	± 1356216.000000 m³
	v
	3aepum-

Рис. 203. Отчет с результатами вычисления объемов (референсная поверхность - плоскость с постоянной высотой);

😌 Orver	
	Результат расчета объемо 29 коября 2018 г., 17:19:43
	Проект Aalen_DMC_copy_for_vectors
	Система координат: WGS 84 / UTM zone 32N
Объем насыпи:	6774421.550248 m ³
Объем выемки:	0.000000 m ³
Относительный объем изменений:	6774421.550248 m³
Абсолютный объем изменений:	6774421.550248 m³
Результирующая площадь:	1221292.005420 m ²
Покрывающая поверхность	DEM Файл /Techsupport/Aalen_Group/Aalen_DMC_copy_for_vectors/Data/dem/DEM_2m.x-dem Ширина 495.000000 пикселей Высота 739.000000 п их.совойо т Шаг 2.0000000 п и 2.000000 п Точность по Z ± 1.000000 п
Референсная поверхность	DEM Файл /Tcchsupport/Aalen_Group/Aalen_DMC_copy_for_vectors/Data/dem/DEM_1m.x-dem Ширина 989.000000 пикселей Высота 1476.000000 пикселей Шат 1.000000 п м 1.000000 т Точность по Z ± 1.000000 т
Априорная оценка погрешности:	± 1221292.005420 m ³
	Закрыть

Рис. 204. Отчет с результатами вычисления объемов (референсная поверхность - матрица высот)

Отчет содержит следующие основные элементы и разделы:

- панель инструментов с кнопками для выполнения следующих операций:
 - 📢 позволяет вернуться в предыдущее место просмотра отчета;
 - *позволяет* обновить результаты в отчете;

- 🚧 позволяет осуществить поиск информации в отчете;
- П. позволяет сохранить данные отчета в файлах с расширениями
 *.htm, *.html вне ресурсов активного профиля;
- — позволяет сохранить данные отчета в файлах с расширениями
 *.htm, *.html в ресурсах активного профиля;
- 🗁 позволяет распечатать отчет;
- раздел отчета содержащий краткие сведения о проекте:
 - название проекта;
 - о дата составления отчета;
 - о система координат проекта;
- раздел отчета содержащий результаты вычисления объемов:
 - Объем насыпи;
 - Объем выемки;
 - о Относительный объем изменений разница объемов насыпи и выемки;
 - Абсолютный объем изменений сумма объемов насыпи и выемки;
 - Результирующая площадь проведения расчетов;
 - Сведения о поверхности, ограничивающей вычисляемый объем;
 - Сведения о поверхности или плоскости с постоянной высотой, ограничивающей вычисляемый объем «снизу»;
 - Априорную оценку погрешности.