Техническая помощь Республики Латвия, предоставленная Ираку в области документирования архитектурных и археологических памятников методами фотограмметрии

Гольдберг Г.С., начальник отдела обработки пространственных данных, Государственная Земельная Служба Республики Латвия, Рига, Латвия

1. Введение

В архитектуре и археологии специалистам по сохранению памятников, архитекторам и историкам архитектуры необходимо иметь высококачественную документацию. Это является основной задачей для научного обоснования исторических высококачественной работы на памятниках. фотограмметрия и лазерное сканирование позволяют получать данные для этой работы. В Египте и Ираке документирование культурного наследия является особенно важным, т.к. в этих странах находятся различные исторические объекты. Наземная фотограмметрия с использованием неметрических цифровых камер это очень быстрый и дешевый метод для документирования. Ортоизображение и цифровая модель поверхности (ЦМП), получаемая из него, позволяют получать большую часть геометрической и радиометрической информации необходимой для документирования фасадов зданий. Основной задачей программы тренинга иракских специалистов был показ и обучение на практике использованию сочетания современного программного обеспечения и неметрической цифровой камеры для получения цифровых ортоизображений объектов. Тренинг проводился архитектурных на следующих экспериментальных объектах: археологические раскопки в Аль-Фустат и мечеть Ахмед Ибн Тулун (Рис.1), Каир, Египет. В докладе представлены результаты работ в мечети Ибн Тулун – одного из важных памятников исламской архитектуры, сохранившихся до наших дней.

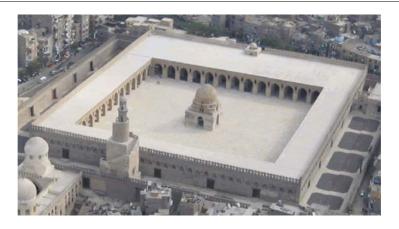


Рис.1 Мечеть Ахмед Ибн Тулун, Каир, Египет

2. Калибровка камеры

Калибровка камеры это процесс определения её характеристик, таких как фокусное расстояние и дисторсия, для того, чтобы в дальнейшем камеру можно было использовать как измерительный прибор. Определение параметров внутреннего ориентирования неметрической 4Мріх цифровой камеры Olympus C-765Z было проведено с использованием двумерной калибровочной сетки (Рис.2) и отдельной программы *PhotoModeler Pro 5.0*.

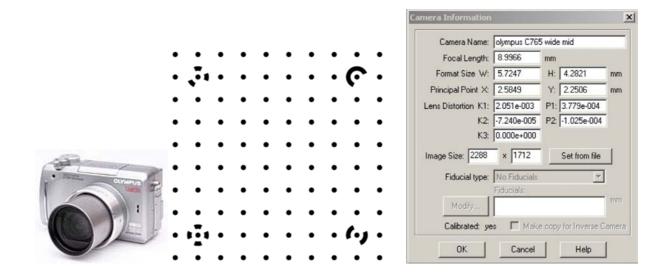


Рис. 2 Двумерная калибровочная сетка и результаты калибровки

3. Геодезическая сеть и поле контрольных точек

Геодезическая сеть очень важна для измерений контрольных точек на объектах и связывания всех измерений для 3D моделирования. Геометрическая точность конечного результата триангуляции снимков зависит от точности

геодезической сети и методов измерения контрольных точек. Специальные отражающие пластины, имеющие белый фон, являются лучшим высокоточным техническим материалом для получения контрольных точек. Контрольные точки были получены при помощи электронной тахеометрической съёмки с минимальным углом 5" и точностью измерения расстояний 2 мм. Для работ в Каире использовались специальные отражающие пластины фирмы SOKKIA и электронный тахеометр SET 310.

4. Триангуляция изображений

Этот отчет содержит описание результатов обработки снимков с использованием программного пакета *Photomod 3.7*. Для проведения тренинга были взяты контрольные точки только для небольшой части одной из стен, куда входили 6 отмеченных контрольных точек в 4-х стерео моделях (Рис.3). Результаты триангуляции представлены в таблице 1.

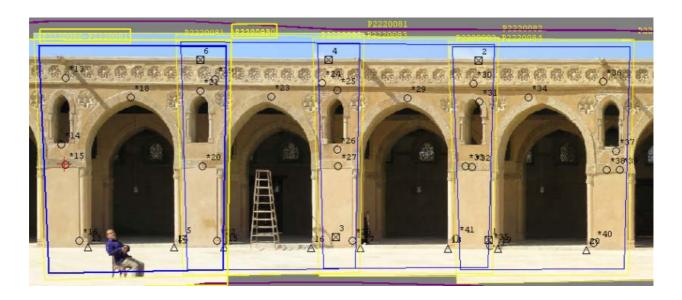


Рис.3 Часть стены с 6 отмеченными точками (в окне программы Photomod)

Табл.1: Результаты триангуляции снимков для 4-х моделей (в метрах) (веса=1)

Номер точки	$X_v - X$	Z_v – Z	$Y_v - Y$	EXY
1	0.003	0.003	0.009	0.004
2	-0.003	-0.006	0.013	0.007
3	0.003	0.002	-0.012	0.004
4	-0.001	-0.002	-0.006	0.002
5	- 0.001	-0.007	0.014	0.007
6	0.000	0.005	0.012	0.005
СКО	0.002	0.005	0.011	0.005
Макс.	0.003	0.007	0.014	0.007
ошибка				

В процессе экспериментов такие высокоточные результаты триангуляции были достигнуты только для этой части стены объекта с отмеченными точками. Для всей стены результаты получились менее точными, для СКО $\sim 2-4$ см.

5. Цифровая модель поверхности (ЦМП) и создание ортоизображения

Цифровая модель поверхности (Рис.4) в этом проекте была создана с использованием векторов и структурных линий, векторизованных вручную. В архитектурной фотограмметрии отношение разниц высот к расстоянию съёмки намного больше, чем в фотограмметрии аэросъёмки. Поэтому ошибки в цифровых моделях поверхности имеют огромное влияние на точность получаемых ортоизображений. Ошибки в плановом положении неоднородностей на поверхности объекта приводят к неприемлемым результатам. Поэтому необходимо использовать структурные линии или получать данные очень высокой плотности. Основной проблемой в создании цифровых ортоснимков фасадов (Рис.5) является получение ЦМП достаточной точности.

Рис.4 Матрица высот для части стены

Рис. 5 Результирующее ортофото изображение части стены

6. Выводы

- Любительские цифровые неметрические камеры при невысоких требованиях к точности могут быть использованы для решения целого ряда фотограмметрических задач, например для документирования зданий, и т.д.
- Любительские цифровые камеры с количеством пикселов, равным или большим, чем 5 Мріх, хорошо подходят для целей фотограмметрии.
- Ортоизображения и полученные из них цифровые модели поверхностей (ЦМП) являются самым быстрым способом получения большей части геометрической и радиометрической информации, необходимой для документирования архитектурных и археологических объектов.
- Определение и маркировка контрольных точек и наличие координат центров проекций снимков могут улучшить точность триангуляции снимков.
- Область перекрытия снимков должна быть более 60%

7. Использованная литература

- 1. Maris Kalinka, 2005. Using the digital cameras in architectural photogrammetry in Egypt.
- 2. Albert Weidemann, Technical University of Berlin, Digital orthoimages in architectural photogrammetry using digital surface models.

3. Birute Ruzgiene, Vilnius Technical University. Performance evaluation of non-metric digital camera for photogrammetric application.

Григорий Гольдберг, инженер геодезии и картографии, начальник отдела обработки пространственных данных, Государственной Земельной Службы Республики Латвия,

Адрес: 43 O. Vacieša street, Rīga, LV-1004, Latvia

E-mail: grigorijs.goldbergs@vzd.gov.lv